
Dr Wimp's
Surgery

Ray Favre

Dr Wimp's
Surgery

An introduction to Wimp programming

Ray Favre

(for Acorn RISC OS computers)

and the 'Dr Wimp' package

© Ray Favre 1998

Second Edition 2003

As with “Starting Basic” (still available!) this book has been
produced for charity. That is, all excess of income over costs
actually paid to third parties will go to charity.

The main charity is the Norfolk and Norwich Children’s Fund,
attached to the Norfolk and Norwich Hospital. I have no
association with this Fund at all, but have been happy to pass on
over £2000 to it so far from the sales of both books.

I gratefully acknowledge the encouragement and assistance given by
Andrew Ayre, the original author of the ‘Dr Wimp’ package.

The ‘Dr Wimp’ package is Public Domain (PD) and includes several
other PD items by other authors - most of whom I couldn’t
contact. Because of the above-stated charity arrangements I
believe (and hope!) that I am not transgressing any of their
individual distribution conditions and I gratefully acknowledge
their contribution to this exercise.

Thanks are also due to Eddie Lord who made helpful suggestions on
layout etc.

Ray Favre

March 2003

First edition July 1998

Second edition March 2003

This book comes with floppy discs (or a CD-ROM) containing:

- all the tutorial applications developed in the book, including
complete successive versions of the main tutorial application
built up over Chapters 4-16.

- the complete ‘Dr Wimp’ package (latest version available)

- for reference purposes, the version of the ‘Dr Wimp’ package on
which this book is based (Version 3.80)

- a ‘de-archiver’ application (!SparkPlug) to allow the above items
to be ‘unpacked’.

De-archiving procedure (A hard disc is necessary.)

Load the floppy disc (or CD-ROM) provided with the book into
your drive and open its window.

Double-click on !SparkPlug to load it onto the iconbar.

Open a suitable directory window on your hard disc and ‘drag copy’
the rest of the floppy disc (or CD-ROM) contents to it.

In turn, double-click on each of the copied items which are archived.
For each one, a conventional-looking window will open with
various items in it.

Drag any or all of these items to your hard disc directory window.
This will cause de-archived copies to be saved to your hard disc.
Use these hard disc versions as your working copies.

Close/dismount the floppy disc (or CD-ROM) and keep it in a safe
place as backup.

With effect from 1st May 1999 the support of the Dr Wimp
package was taken over by Ray Favre - the author of this book.

The latest version of the package can be downloaded from the
web site at the address on the previous page.

Foreword

Nearly three years ago, I was persuaded by the late Jim Nagel to help him
resurrect this book. Apparently, after Ray’s death, the original files had
disappeared and also the A4 printing masters. Using an OCR program I
produced two versions of a sample chapter and sent them to him.

Though pleased with the samples, he died in the spring of 2021 before he
could give me the go-ahead and the project fell into abeyance. A year later
I began to look at what would be involved in recreating the whole book
but before I finished I decided to find out whether or not I had the right to
release it. Thanks to Martin Avison, I discovered that the rights to all of
Ray’s work had passed to the editor of Archive magazine. These rights
were vested in Jim (which he never mentioned) and are now passed to
Gavin Smith who picked up the reins as the editor of Archive.

After contacting Gavin, I carried on and finished the project with his
blessing. Initially, I recreated the second edition of the book as closely as
was reasonable. It is the intention of both Gavin and me that this should be
an on-going project. Further editions will be made available as PDF files
from the Archive web site. There will be no charge for these downloads.

Gavin has indicated to me that it might be possible to publish the book as
hard-copy and to donate any profit in the same way that Ray did.

I am not a programmer and so cannot maintain the program, Dr Wimp.
Chris Johnson has carried out some under-the-hood bug fixes and the
software has reached version 5.02 as of 1st January 2012. At the time of
writing (May 2022) the program can be downloaded from Ray’s website at
http://drwimp.riscos.org/!home.php.

Updating the book is a long-term project and I would welcome help in the
form of suggestions for improvements, correction of errors and proof-
reading.

John McCartney

July 2022

Website: http://www.archivemag.co.uk

Email: docwimp@gmail.com

How close to the original?

I have made every effort to stick close to the original look of the book.
Given that I haven't been able to accurately identify the page metrics or
the font used, there are bound to be differences.

Necessarily, there has been an impact on pagination and I have tried to
make any adjustments be limited to within a chapter so that the next
chapter starts on the same page as the original.

Ray set the entire book in Impression with the option to use smart quotes
set. As a result any plain quotes in a program listing or a program
fragment are incorrectly shown as “ (opening) or ” (closing) which, in
Courier, appear to be the same: “ (opening) or ” (closing). I have chosen
to leave them as such for this new version of the second edition. It will be
corrected for later editions.

Ray overlooked a reference needed on page 297. He wanted to refer to an
illustration in an earlier chapter and left the reference as (Page ???). I have
corrected this to (Page 84).

There have been a (very) few corrections to spellings/punctuation. If any
more are found, I would be obliged if they can be fed back to me so that I
can incorporate corrections in later editions.

Contents

Introduction 1

1 The nature of Wimp programs 5

2 Why use DrWimp? 15

3 What’s in the Dr Wimp package? 47

4 Getting started with Dr Wimp 51

5 The Iconbar icon and its menu 67

6 Adding windows and icons 75

7 More windows 83

8 Mouse clicks 97

9 Dynamic menus 103

10 Yet more windows and menus 109

11 Wimp graphics (The principles) 117

12 Wimp graphics (The practice) 123

13 Creating windows/icons from within a program 141

14 Printing 149

15 DrWimp library version 159

16 Post-programming utilities 161

17 More on Menus 175

18 Saving and loading data 185

19 Handling image files 191

20 Handling text 205

21 More on printing 211

22 Sliders and bars 215

23 Panes 221

24 The ‘NULL%’ global variable and Multi-tasking 223

25 Colour picker 227

26 Important common facilities 233

27 Other facilities 247

Appendix 1 SYS calls (SWIs) 249

Appendix 2 Reason Codes 257

Appendix 3 Application resources 259

Appendix 4 Window/Icon button types 265

Appendix 5 Icon validation string 269

Appendix 6 !Fabricate 277

Appendix 7 The ITemplEd application 285

Appendix 8 User-functions 307

Appendix 9 Wimp-functions 313

Appendix 10 Wimp Messaging system 315

Index Not included in this issue

1

Introduction

This book is for users of RISCOS computers and aims to serve two main
purposes.

Its first intention is to provide a comprehensive practical guide to using
the Dr Wimp package for producing Wimp programs, for anyone
reasonably familiar with BBC Basic V (or VI).

Its second intention is to give a good introduction to the general nature of
Wimp programming in Basic.

These two aims are not contradictory, particularly as there are several
fundamental Wimp topics which need to be learned whether or not
Dr Wimp is used e.g. window template editor, button types, validation
strings. Such items are covered in detail in this book and thus provide a
useful guide to all wishing to write Wimp programs.

In fact, as it is hoped you will find, the more you learn about Wimp
programming in general, the further you will be able to benefit from using
Dr Wimp - and the more you use Dr Wimp, the more you will learn about
Wimp programming in general.

The hoped-for result is that, however little or much you know about Wimp
programming in general, you will want to use Dr Wimp for its sheer all-
round convenience.

As already indicated, it is assumed the reader is reasonably adept in using
the BBC Basic programming language. But if you are not, the author’s
companion book “Starting Basic” is still available. (In many ways, this
current book is the natural sequel to “Starting Basic”.)

Introduction

2

Book sequence
The book starts with an introduction to the nature of Wimp programming
in general, with particular emphasis on the Wimp Poll, Reason Codes and
SYS (SWI) calls.

It then asks the question “Why use Dr Wimp?” and seeks to answer this in
a very practical way by presenting an example of a simple Wimp
application produced in three different ways:

a) ‘from scratch’, without using any libraries or other utilities;

b) as in a) but using window definition templates;

c) using Dr Wimp.

Then, after making sure you are familiar with what the Dr Wimp package
contains and how to get the latest version, the preparations for using
Dr Wimp in earnest are covered. Several subsequent chapters adopt a
tutorial style to build progressively a real Wimp application using the main
features of the Dr Wimp package.

Once the tutorial application is completed, later chapters ensure that a
fuller range of the Dr Wimp package is adequately explored.

Appendices cover reference material mainly. One gives a detailed practical
guide to using a window template editor.

If you are really anxious to get straight into Dr Wimp then you
could skip directly to Chapter 3………

Program listings and discs
Throughout the book, many program extracts are listed, but it is a fact of
life that full listings of most Wimp programs are simply too long for
sensible printing in a book.

Thus, sufficient listings are printed to get the points across and successive
full listings of the tutorial are on the supplied floppy discs (or CD-ROM).
It is strongly recommended that you make a ‘working copy’ of these
listings and keep the original in a safe place as backup. This is

Introduction

3

particularly relevant if you intend to follow the tutorial sequence ‘at
the keyboard’. (Some files on the disc have been deliberately locked to
reinforce this point. Take a copy and unlock the copy.)

Please also note that due to the length of some of the Basic statements,
the listings/extracts in this book sometimes have additional line-
breaks, spaces, hyphens etc. in order to enhance their readability in
print. You should refer to the supplied listings on the floppy disc (or
CD-ROM) for complete accuracy.

Programming style
It needs to be stressed that the programming style and routines used in this
book are not being advanced by the author as paragons of virtue, nor ‘the
only way it should be done’. One of the joys of BBC Basic and the
RISCOS is their flexibility: there is always more than one way to achieve
an end. Sometimes this book has definitely given priority to making the
listings easier to follow rather than locating a snippet of code in a more
logical place.

Dr Wimp version
The book comes with a copy of the latest version of the complete
Dr Wimp package - which may be a later version than the one used to
prepare the book (which was Version 3.80).

To help avoid any confusion whilst you are following the detail of the
book, a complete copy of Version 3.80 of the Dr Wimp package is also
included for reference. Don’t mix up the two versions!

(Updated versions with added facilities are likely to appear regularly.
Contact addresses for Dr Wimp updates etc. are given at the front of this
book.)

The PRM
The book makes frequent references to the PRM - the RISCOS
“Programmers Reference Manual”. It is not needed for the purposes of
this book but, nonetheless, the PRM is the only authoritative source of the
details of RISCOS, particularly the details of SYS calls.

Introduction

4

Conventions used in this book.

Program listings/extracts are in this typeface. The
same typeface is used within the normal text when reference is
made to program items e.g. “ ..the function FNwimp_quit is
used ... ”

<angle brackets> are used (often also in the above typeface) in two
ways: firstly to indicate in example listings/ extracts that the
programmer needs to substitute something appropriate of his/her
own choice at that place - and, secondly, to represent in the text a
specific keyboard key press or mouse button action e.g.
<select> to mean a press of the mouse ‘Select’ button.

The successive versions of the tutorial application - developed in
Chapters 4-16 - are referenced to the chapter in which they first
appear, using letters to distinguish between more than one in the
same chapter e.g. !Fuel16a and !Fuel16b are, respectively,
the first and second versions completed in Chapter 16. The disc
(or CD-ROM) associated with this book contains complete applications
- with commented program listings - for each successive version of the
tutorial application.

Bold text is used for emphasis.

Italic typeface is used mainly for comments outside the main flow of
the text.

Finally, it is necessary to distinguish between references to the
Dr Wimp package as a whole and the specific DrWimp library
within it. This is done exactly as in the previous sentence.

Introduction

5

1. The nature of Wimp programs

This chapter gives a brief overview of how the Wimp operates and the
consequential program structure. Many of the topics are dealt with in
greater detail later.

Wimp and non-Wimp applications
A non-Wimp program - however small - monopolises the computer whilst
it is running. Even when we do not specify a screen mode change and the
program appears to run within a Task Window on the desktop screen, we
cannot ‘get out of that window until the program has ended and we are
invited to “Press SPACE or click mouse to continue”.

In contrast, when a Wimp program is run it usually adds something to
what is already on the desktop screen. It doesn’t prevent user interaction
with other applications already present and - memory space permitting - it
doesn’t stop even more applications from being added. This is the obvious
first difference between non-Wimp and Wimp programs.

The second main difference is the way the user makes an input. A Wimp
program typically puts pictorial symbols (icons) on the desktop screen and
most input is carried out by placing the screen pointer on one of the icons
and clicking a mouse button. In non-Wimp programs, the keyboard is used
much more.

Further, when a non-Wimp program needs user input, the computer sits
there idly waiting until the input is made - and nothing else can happen
until then. In contrast, Wimp programs can allow other tasks to proceed
whilst waiting for user input.

A third difference is more pragmatic. Wimp programs tend to need a lot
more program lines to be written before a program can

1. The nature of Wimp programs

6

meaningfully be run and cause something to appear on the screen. In fact,
this initial hurdle has often been sufficient to put off newcomers from
trying further. (This is an area where Dr Wimp helps tremendously.)

The Window Manager (“the Wimp”)
Because a non-Wimp program monopolises the computer, the program
proceeds line by line in exactly the way the programmer has structured it.
There may be loops, branches and conditional statements etc. but they
were all put there by the programmer alone and you can usually follow the
flow from start to finish in the listing without undue difficulty. Essentially,
the non-Wimp programmer never ‘releases the reins’.

The fundamental change when we come to Wimp programs is that - in
order to permit more than one program to be active on the desktop screen
simultaneously - the programmer has to release the reins for some of the
time or, more accurately, release some of the reins all the time.

And finally, the Window Manager automatically carries out a very large
number of tasks which the programmer would have to do for himself/
herself in a non-Wimp program.

Asking ‘the question’
Roughly what happens for Wimp programs is that a manager program
(called the Window Manager, or just “the Wimp”) within the RISC
operating system of the computer, is used to handle all the input and
output to/from Wimp application programs. This does not mean just the
input/output to devices such as a printer, but literally all the input/output
to/from the application and the user e.g. mouse clicks etc.

Any Wimp application program therefore has to be structured to permit
this - and this is the entry fee demanded by the Window Manager.

1. The nature of Wimp programs

7

In colloquial terms, the application program needs to be structured to ask
the Window Manager, repeatedly, “Anything happened lately, concerning
my program?”

For much of the time the answer will be “No”. But if, for instance, the
user makes a mouse click over one of the program’s icons on the screen,
the Window Manager records that click and next time the question comes
the Window Manager says “Yes, there was a mouse-click over an icon.” -
and gives the details of which mouse button and which icon etc.

The application program then takes over control temporarily in order to
carry out whatever consequential action it has been programmed to do i.e.
appropriate to that particular mouse click. It then hands back control to the
Wimp and reverts to repeating its earlier question, until some further
positive response occurs.

What the application program doesn’t realise is that the Window Manager
is being asked the same question repeatedly by every other active Wimp
application program - and they all share the available time, usually
without any apparent difficulty from the user’s viewpoint. Thus more than
one application can run on the desktop at the same time.

The mental process
Seen from the viewpoint of a single application, the action can therefore
be considered to proceed in a series of short responses (by the application)
made after positive answers (from the Wimp) to ‘the question’ (asked
repeatedly by the application).

Mentally, the programmer has to adjust to this and, by and large, it
actually makes things somewhat easier. The main program structure is
usually set by the repeated need to ask ‘the question’ and the programmer
therefore can focus more on the user interfaces (the window design
primarily) and the individual responses required to the range of possible
user actions.

For example, a menu selection may be required to open a window into
which some keyboard input is to be made into an icon. In Wimp
programming terms this would typically break down into:

1. The nature of Wimp programs

8

Construct and display the menu (as a response to
pressing the <menu> button)

Select a menu item and open the window (as a
response to clicking <select> over the
menu item)

Display the text in the icon (as a repeated
response to pressing a keyboard
character)

Thus, this perfectly ordinary small program sequence actually involves
three separate journeys round the question-and-answer routine between
the program and the Wimp. (In fact, it is likely to involve more than three
journeys, because the third action will be repeated for each press of the
keyboard.)

How to join in
In order to join in with the Wimp, an application program needs to:

- log on with the Window Manager.

- keep asking ‘the question’.

- respond without delay to a positive answer.

- log off when the program exits.

Thus, the programmer still retains full control over what the program does
- but not over precisely when it does it. Having said that, we are dealing
with timings in milliseconds and the time-share aspects are usually
invisible to the user.

As we shall also see, the Window Manager more than compensates for
imposing itself in this way by relieving the programmer of a host of boring
tasks.

For example, when the programmer wants a window shown on the screen
he/she simply tells the Window manager to do it using a SYS call, passing
any essential details in a parameter block. (Appendix 1 reviews the structure
and usage of SYS calls, in detail). The Window Manager then does the
difficult bits - and you will be surprised how much is done and how
relatively easy it is for the programmer.

1. The nature of Wimp programs

9

The Wimp poll
The particular control process used by the Window Manager to control all
the active applications is a polling mechanism, called the Wimp Poll. The
heart of all Wimp programs is usually just a fairly simple PROC, normally
placed inside a WHILE ... ENDWHILE loop, which repeatedly ‘asks the
question’ and then branches the program along an appropriate path when a
positive response is received.

Thus, the outline structure of a typical Wimp program is:

PROCinit :REM** Sets up parameter blocks (such as

DataBlock%, see below) and logs on to

Window Manager **

WHILE (Quit% = FALSE)

 PROCpoll :REM** Calls PROCpoll repeatedly

 **

ENDWHILE

PROCexit: REM** Logs off from Window Manager **

END

DEF PROCpoll
SYS “WimpPoll” , 0 , DataBlock% TO Reason%

:REM** ‘Asks the question’ and
designates variable and data block for
answer **

CASE Reason% OF : REM** Deals with a range of
possible different answers **

WHEN 0 : PROCaction0
WHEN 1 : PROCaction1
.
.
etc.

ENDCASE
ENDPROC

What is often initially surprising to the learner is that the core of every
Wimp program tends to look the same. The differences come in the
PROCactionX area.

1. The nature of Wimp programs

10

The heart of the program is the line:

SYS “Wimp_Poll” , 0 , DataBlock% TO Reason%

which ‘asks the question’ and puts the response into the variable Reason%
and often also puts, into DataBlock%, detailed data associated with the
response.

For instance, if the Wimp is reporting that a mouse click has occurred, it
would put the ‘mouse click has occurred’ code into Reason% and put into
DataBlock% the details of which mouse button was used, whether it was
clicked once or double-clicked or dragged, which icon the pointer was
over, etc. The programmer can then use these data to deal with the
application’s response to the mouse click.

Reason codes
The name of the variable used to receive the answers has deliberately been
called Reason% because the Wimp Poll gives its answers by using
“Reason Codes”, which currently can take any of the values 0-19. The
table in Appendix 2 gives the full description of all these codes and we
will be returning to this subject in more detail later. However, for now, a
brief glance shows that the reason codes cover all the usual user-input
actions.

For instance, Reason Code 6 means that a mouse click has occurred - and
therefore, in the above example, Reason% would be given the value 6.

Similarly, Reason Code 9 means that an item from a Wimp menu has been
chosen. Thus, the Wimp would put the value 9 into Reason% and, this
time, DataBlock% would be used to hold data on which item, on which
menu, etc.

So, the Wimp programmer’s main task is to develop the responses to the
various reason codes - potentially all 20 of them. Further, as most
applications will involve more than one window/icon/menu, each reason
code response will normally need to cater for many different window/icon/
menu combinations. (So, CASE ... ENDCASE constructions are heavily
used.)

1. The nature of Wimp programs

11

Reason Code 0 needs a special mention because it is the one returned by
the Wimp if the answer to ‘the question’ is “No”. The problem is that this
is very much the most frequent response - so much so that it can
sometimes slow an application down. For this reason it is often ‘masked
out’ by the programmer so that it is not returned. There is more on
‘masking’ later.

Flow diagram
If we link the repeated action of ‘asking the question’ with the use of
reason codes, it will be no surprise that a flow diagram of a typical Wimp
program tends to comprise multiple main loops, all entering and leaving
the Wimp Poll. The figure below represents this. Each loop (only four
shown) represents a response to a different reason code - noting that, as
was just said, each such response is likely to comprise many different sub-
responses.

2 6 8 9

Quit

Schematic Wimp program structure

Action to
open a
window

Response
to mouse

click

Response
to menu
seletion

Response
to key
press

Wimp Poll

Returned

Initialisation
and log onto

Window Manager

Reason Code

1. The nature of Wimp programs

12

Parameter blocks
Wimp programming makes considerable use of parameter blocks and a
few examples will be worthwhile.

In order to open a window, an application must make a sys call which tells
the Wimp all the necessary information about the particular window e.g.
its size, screen position, scroll offsets etc.

The programmer’s procedure is, in effect, to place all this data in a
parameter block and then pass the address of the block with the SYS call -
as one of the SYS call’s own parameters. A typical call might be:

SYS “Wimp_OpenWindow”,,MainWindow%

and the required details will have been previously loaded into
MainWindow% by the programmer. The window will then be duly opened
by the Wimp.

Sometimes the Window Manager needs to prod the program to take some
action, as a result of a user action not apparently directly associated with
the application. For instance, if you drag an open window of your program
to a different part of the screen the Window Manager will start issuing
Reason Code 2 (request to open a window) because moving a window is
essentially a repeated deletion and reopen exercise. In this case, the Wimp
will helpfully and automatically place all the necessary data into the
parameter block for you, but you will need to ensure that your program
issues the SYS “Wimp_OpenWindow” call.

So, nearly every Wimp program needs, as a bare minimum, a routine to
respond to Reason Code 2, otherwise the window simply will not drag.

Similarly, if you click on the window ‘close’ icon the Window Manager
will issue Reason Code 3 and place the necessary data into the parameter
block - but you have to ensure that SYS “Wimp_CloseWindow” is called
in response to Reason Code 3.

In practice, as we will show, loading parameter blocks does not need to be
a tedious task, because there are various tools to ‘automate’ it. And this is
one of many areas where using Dr Wimp will make it really simple.

1. The nature of Wimp programs

13

‘Shell packages’ and similar programming tools
Many Wimp programming actions need to use a relatively small number
of SYS/PROC/FN calls over and over again - albeit with minor changes to
the parameters being passed to them. Similarly, although heavy use is
made of parameter blocks, it is usually by using relatively few blocks over
and over again, for many different purposes.

Also, we have already seen that the basic structure of many Wimp
programs is identical and centred on the Wimp Poll, as indicated in the
earlier flow diagram.

Because of these factors, it becomes perfectly feasible to produce two
things:

- a skeleton Wimp application which will serve as the backbone of
many applications, and

- a library of PROC/FNs which will serve many programs,
particularly to help with the constant loading of the parameter
blocks followed by the right SYS call.

Thus, packages are available to do just this - sometimes called ‘shell’
packages - and maybe with other useful ‘tools’ included.

Dr Wimp can perhaps be best described as a ‘second-generation shell
package’ because it extends the idea even further - as we will see.

None of these packages remove the need for the programmer to devise
particular routines specific to each program nor the need to understand the
above-described nature of Wimp programming. However, they can
certainly relieve him/her from much of the repeated drudgery of the
process and they can eliminate many of the keyboard inputting errors.

Naturally, you do not get something for nothing - the resulting
programs from these tools are likely to need more memory than if you
tackled each one from scratch and they may not run quite so fast.
Fortunately, for many applications, these are not usually significant
penalties

1. The nature of Wimp programs

14

1. The nature of Wimp programs

15

2. Why use Dr Wimp?

To convert the principles of the previous chapter into practice - and at the
same time demonstrate the advantages of Dr Wimp - this chapter shows a
small Wimp application produced in three different ways, but achieving
exactly the same end results. The three ways are:

a) ‘from scratch’ i.e. using the necessary SYS calls directly and
without using any libraries;

b) essentially the same as in a), but using window definition
templates to define the windows and their icons;

c) using Dr Wimp.

The three applications are on the book disc and are called !TestApp1,
!TestApp2 and !TestApp3 respectively. The rest of this chapter
examines them in more detail, enabling comparisons to be made and also
providing an introduction to typical Wimp programming methods in
Basic.

At this stage, the examination does not look in detail at the ‘application
resources’ i.e. the !Boot, !Run, !Sprites etc. files within the
application directory. These are covered in Appendix 3,

The demonstration applications
The three demonstration applications produce identical results.

Each ‘loads onto the iconbar’ in the usual Wimp way and pressing
<select> over the iconbar icon then produces a small main window
containing just one icon, carrying text, as shown in the following
screenshot:

2. Why use Dr Wimp?

16

Pressing <menu> over the iconbar icon produces a menu with three items
in it: the first and third menu items are the traditional ‘Info’ and ‘Quit’
items, respectively, and the second item is ‘Sub-menu’.

The ‘Info’ item has the usual type of Info box associated with it and the
‘Sub-menu’ item leads to a sub-menu containing three items “Iteml”,
“Item2” and “Item3”. At the start, ‘Iteml’ of the sub-menu is ticked - and
the icon in the main window shows the text “Iteml” accordingly.

Selecting any item from the sub-menu list causes that item to attract the
tick and the text in the main window icon changes to reflect the selected
sub-menu item i.e. “Iteml” or “Item2” or “Item3”.

As usual, the application is ended by selecting ‘Quit’ from the iconbar
menu.

2. Why use Dr Wimp?

17

‘!TestApp1’
As !TestApp1 involves using fundamental Wimp programming methods
‘from scratch’ it is appropriate to look at it in some detail. Thereafter, the
comparisons with !TestApp2 and !TestApp3 can be handled more
quickly.

Here is the complete !RunImage listing of !TestApp1:

10 REM** Wimp test “!TestApp1” **
20 REM** Example program defining window etc. from

scratch. **
30
40 PROCinit
50
60 SYS “Wimp_Initialise”,310,&4B534154,App$,

WimpInitWord%
70
80 ON ERROR PROCerror:END
90
100 REM———————————————
110 REM** Define main window. **
120 TestWindow%=FNcreateWindow(400,400,500,600,

0,0,&FF000012,“Test window”)
130
140 REM———————————————
150 REM** Define icon within main window. **
160 $text%=“Item1”
170 $valid%=“”
180 IconTextLength%=17
190 Icon1%=FNcreateIcon(TestWindow%,32,-100, 240,

44,&C7000135,“”,text%,valid%,
IconTextLength%)

200
210 REM———————————————
220 REM** Define info window. **
230 Info%=FNcreateWindow{0,0,456,204,

0,0,&84000012,“Info”)
240
250 REM———————————————
260 REM** Define icons within info window. **
270 RESTORE 3010
280 FOR N%=1 TO 4:READ Text$
290 Dummy%=FNcreateIcon(Info%,0,-N%*48-4,

128,44,&17000211,Text*,0,0,0)

2. Why use Dr Wimp?

18

300 NEXT
310
320 FOR N%=1 TO 4:READ Text$
330 Dummy%=FNcreateIcon(Info%,128,-N%*48-4,

320,44,&1700003D,Text$,0,0,0)
340 NEXT
350
360 REM———————————————
370 REM** Define iconbar icon - which also

displays it. **
380 IconBar%=FNcreateIcon(-1,0,0,68,68,&3002,

“!testappl”,0,0,0)
390
400 REM———————————————
410
420 REM** Define iconbar menu and sub-menu. **
430 RESTORE 3030
440 PROCsetUpMenu(MenuBlock%)
450
460 RESTORE 3040
470 PROCsetUpMenu(SubMenuBlock%)
480
490 REM———————————————
500
510 WHILE NOT Quit%
520 PROCpoll
530 ENDWHILE
540
550 REM———————————————
560
570 SYS “Wimp_CloseDown”
580
590 END
600
610 REM***
620 REM***
630
640 DEF PROCinit
650
660 DIM WimpInitWord% 4
670 !WimpInitWord%=0
680
690 DIM DataBlock% 255,MenuBlock% 127,

SubMenuBlock% 127
700
710 DIM text% 20

2. Why use Dr Wimp?

19

720
730 DIM valid% 20
740
750 Quit%=FALSE
760 App$=“TestAppl”
770 SelectedSubItem%=0
780
790 ENDPROC
800
810 REM**
820 REM**
830
840 DEF PROCpoll
850 SYS “Wimp_Poll”,&31,DataBlock% TO Reason%
860 CASE Reason% OF
870 WHEN 2:SYS Wimp_OpenWindow”,,DataBlock%
880 WHEN 3:SYS “WimpCloseWindow”,,DataBlock%
890 WHEN 6:PROCclick(DataBlock%!12)
900 WHEN 9:PROCmenuSelect
910 ENDCASE
920 ENDPROC
930
940 REM**
950 REM**
960
970 DEF PROCreport(Err$,Flag%)
980 Title$=App$
990 IF Flag% AND 16 THEN Title$=“Message from ”+

Title$
1000 !DataBlock%=255
1010 $(DataBlock%+4)=Err$+CHR$0
1020 SYS “Wimp_ReportError”,DataBlock%,

Flag%,Title$ TO ,ErrorClick%
1030 ENDPROC
1040
1050 REM***
1060
1070 DEF PROCerror
1080 PROCreport(REPORT$+“ at Line ”+STR$ (ERL),1)
1090 SYS “Wimp_CloseDown”
1100 ENDPROC
1110
1120 REM***
1130 REM***
1140

2. Why use Dr Wimp?

20

1150 DEF FNcreateWindow(x%,y%,w%,h%,extx%,exty%,
Flags%,Title$)

1160
1170 REM visible work area
1180 !DataBlock%=x%
1190 DataBlock%!4=y%
1200 DataBlock%!8=x%+w%
1210 DataBlock%!12=y%+h%
1220
1230 REM scroll offsets
1240 DataBlock%!16=0
1250 DataBlock%!20=0
1260
1270 REM handle behind and window flags
1280 DataBlock%!24=-1
1290 DataBlock%!28=Flags%
1300
1310 REM window colours
1320 DataBlock%?32=7
1330 DataBlock%?33=2
1340 DataBlock%?34=7
1350 DataBlock%?35=1
1360 DataBlock%?36=3
1370 DataBlock%?37=1
1380 DataBlock%?38=12
1390
1400 REM work area extent
1410 DataBlock%!40=0
1420 DataBlock%!44=-h%-exty%
1430 DataBlock%!48=w%+extx%
1440 DataBlock%!52=0
1450
1460 REM title bar and work area flags
1470 DataBlock%!56=&19
1480 DataBlock%!60=3<<12
1490
1500 REM sprite area pointer and minimum size
1510 DataBlock%!64=1
1520 DataBlock%!68=0
1530
1540 REM window title
1550 $(DataBlock%+72)=Title$
1560
1570 REM number of icons
1580 DataBlock%!84=0
1590

2. Why use Dr Wimp?

21

1600 SYS “Wimp_CreateWindow”,,DataBlock% TO
WindowHandle%

1610
1620 =WindowHandle%
1630
1640 REM**
1650
1660 DEF FNcreatelcon(Window%,x%,y%,w%,h%,

Flag%,Text$,Ptr1%,Ptr2%,Ptr3%)
1670
1680 !DataBlock%=Window%
1690 DataBlock%!4=x%
1700 DataBlock%!8=y%
1710 DataBlock%!12=x%+w%
1720 DataBlock%!16=y%+h%
1730 DataBlock%!20=Flag%
1740 IF Ptr1%=0 THEN
1750 $(DataBlock%+24)=Text$
1760 ELSE
1770 DataBlock%!24=Ptr1%
1780 DataBlock%128=Ptr2%
1790 DataBlock%!32=Ptr3%
1800 ENDIF
1810

1820 SYS “Wimp_CreateIcon”,,DataBlock% TO
IconHandle%

1830
1840 =IconHandle%
1850
1860 REM***************************************
1870
1880 DEF PROCsetUpMenu(Menu%)
1890 REM** Defines a menu by loading parameters

into a data block. **
1900
1910 READ Title$,Items%
1920 $Menu%=Title$
1930 MenuWidth%=16*LEN(Title$)
1940
1950 Menu%!12=&70207 :REM** Colours. **
1960 Menu%!20=44 :REM** Height of menu items. **
1970 Menu%!24=0 :REM**Vertical gap between

items.**
1980

2. Why use Dr Wimp?

22

1990 REM** Sub-block of 24bytes for each menu
item, starting at Byte 28. **

2000 Ptr%=Menu%+28
2010 FOR N%=1 TO Items%
2020 READ MenuFlag%,SubPtr%,MenuItem$
2030 !Ptr%=MenuFlag%
2040 Ptr%!4=SubPtr%
2050 Ptr%!8=&7000021
2060 $(Ptr%+12)=MenuItem$
2070 W%=16*(LEN(MenuItem$)+l)
2080 IF W%>MenuWidth% THEN MenuWidth%=W%
2090 Ptr%+=24
2100 NEXT
2110
2120 Menu%!16=MenuWidth%
2130 ENDPROC
2140
2150 REM**
2160
2170 DEF PROCclick(Window%)
2180 REM** Responses to mouse clicks over windows/

icons. **
2190
2200 CASE Window% OF
2210
2220 WHEN -2
2230 PROCiconBar(DataBlock%!8)
2240
2250 ENDCASE
2260 ENDPROC
2270
2280 REM**
2290
2300 DEF PROCiconBar(Button%)
2310
2320 CASE Button% OF
2330
2340 WHEN 1,4
2350 !DataBlock%=TestWindow%
2360 SYS “Wimp_GetWindowState”,,DataBlock%
2370 DataBlock%!28=-1
2380 SYS “Wimp_OpenWindow”,,DataBlock%
2390
2400 WHEN 2
2410 PROCshowMenu(MenuBlock%,!DataBlock%-64,

228)

2. Why use Dr Wimp?

23

2420
2430 ENDCASE
2440 ENDPROC
2450
2460 REM**
2470
2480 DEF PROCshowMenu(Menu%,x%,y%)
2490 REM** Displays menu whose definition is

already held in a data block. **
2500
2510 FOR N%=0 TO 2
2520 Tick%=SubMenuBlock%+28+N%*24
2530 IF N%=SelectedSubItem% THEN
2540 !Tick%=!Tick% OR 1
2550 ELSE
2560 !Tick%=!Tick% AND 254
2570 ENDIF
2580 NEXT
2590
2600 SYS “Wimp_CreateMenu”,,Menu%,x%,y%
2610
2620 ENDPROC
2630
2640 REM**
2650
2660 DEF PROCmenuSelect
2670 REM** Responses to menu/sub-menu selection.

**
2680
2690 MainSelectItem%=!DataBlock%
2700 SelectedSubItem%=DataBlock%!4
2710
2720 SYS “Wimp_GetPointerInfo”,,DataBlock%
2730 Button%=DataBlock%!8
2740
2750 CASE MainSelectItem% OF
2760
2770 WHEN 1
2780 Ptr%=SubMenuBlock%+28
2790 ItemStart%=Ptr%+24*(SelectedSubItem%)+12
2800 Item?=$(ItemStart%)
2810 $text%=Item$
2820
2830 !DataBlock%=TestWindow%
2840 SYS “Wimp_GetWindowState”,,DataBlock%
2850 DataBlock%!28=-1

2. Why use Dr Wimp?

24

2860 SYS “Wimp_CloseWindow”,,DataBlock%
2870 SYS “Wimp_OpenWindow”,,DataBlock%
2880
2890 WHEN 2
2900 Quit%=TRUE
2910
2920 ENDCASE
2930
2940 IF Button%=l THEN

PROCshowMenu(MenuBlock%,0,0) :REM Keeps
menu open if <adjust> used.**

2950
2960 ENDPROC
2970
2980 REM**
2990 REM**
3000
3010 DATA Name,Purpose,Author,Version
3020 DATA TestApp1,Wimp demo 1,Ray Favre,1.0
3030 DATA TestApp1,3,0,Info%,Info,0,

SubMenuBlock%,Sub-menu,&80,-1,Quit
3040 DATA Sub-menu,3,0,-l,Iteml,0,-l,Item2,

&80,-1,Item3

Initial actions
(As was said earlier - a lot of lines for a small task!)

PROCinit sets up various memory blocks and global variables
(particularly App$ and Quit%) needed by the program.

In most Wimp programs, one memory block in particular, DataBlock%
here, is generally used time and again as a temporary block for passing
parameters to/from SYS calls - and it is usual to create this as one ‘page’ in
size i.e. 256 bytes. (Some SYS calls do not need all this space, but some do
- and occasionally more is needed.)

In this example, unique separate blocks are also set up for each menu and
sub-menu used. This is a simple approach which is sensible when only a
few menus are involved. However, to save memory space, some programs
with many menus use/re-use fewer menu blocks - which is perfectly OK
but requires stricter management, because a menu block needs to be
unique to a menu whilst it is visible on the screen.

2. Why use Dr Wimp?

25

Logging on to the Wimp
The first significant action in the listing is to log on with the Window
Manager (“the Wimp”) and Line 60 does this. Note that this is not
straightforward; not only do you have to give the application name, but
you need to specify the lowest OS version the application is designed for.
There is also a filter flag to ensure that Wimp messages are passed to the
application as needed and a special task flag. The PRM contains the
details.

It is worth noting here that many (but not all) SYS calls are meaningless
outside the Wimp environment, so it necessary for the logging on to take
place in the program sequence before such calls are used.

Error handling
Immediately following the logging on is the main error trap - at Line 80.
The particular SYS call it uses (via PROCerror and PROCreport, see
below) is SYS “Wimp_ReportError” and this is definitely one which
cannot be used outside the Wimp.

Error handling in Wimp programs is very important - not the least
because, in a multi-tasking environment, an error in one application could
easily cause other applications to ‘crash’. So, the general aim is to trap all
errors occurring within an application and, at worst, close down just that
one application. Hopefully, in many cases the error does not need to force
this extreme and the error messages may be able to guide the user to
correct the problem and try again.

The SYS call provided for error handling within the Wimp is pretty
comprehensive, in that its parameters allow a choice of buttons to appear
in the box for user action e.g. “OK” and “Cancel” and also allow the error
box title to be changed to let the user know the error comes from the
application and not elsewhere. The application icon can also be shown in
the error box in later RISCOS versions.

Thus, this SYS call can be used to report both real errors and also helpful
warnings to the user e.g. that a keyboard input needs to be a number rather
than a letter; or unsaved data exists, etc.

2. Why use Dr Wimp?

26

The immediate practical consequences of this are that it is quite normal to
use a pair of error functions, such as those at Lines 970 and 1070:

- firstly, at Line 970, a general PROCreport is constructed to call
SYS “Wimp_ReportError” in such a way that its parameters
determine the message to be carried in the error box and which
types of buttons are presented for the user’s action i.e. ‘OK’ or
‘Cancel’.

PROCreport can therefore be used both for helpful warnings to
the user and for real errors. For helpful warnings, it can be called
like any other PROC from anywhere in the program, as many
times as you wish.

- then, PROCerror (at Line 1070) is called only on real errors - by
the ON ERROR statement at Line 80 here. This calls PROCreport
in a specific way - using REPORT and ERL to provide the error
box text - and then exits from the Wimp before ending the
program.

2. Why use Dr Wimp?

27

Defining windows, icons and menus
With the initiation tasks out of the way, the program can now start to look
at its main visual features - its windows, icons and menus. These are all
dealt with in a similar way, which is that they each have to be defined in
detail and identified to the Wimp before they can be used. Once this is
done they can be brought into play by the program as required.

There is a SYS call for defining each item:

SYS“Wimp_CreateWindow”(see Line 1600)
SYS“Wimp_CreateIcon”(see Line 1820)
SYS“Wimp_CreateMenu”(see Line 2600)
SYS“Wimp_CreateSubMenu”

and although they work in similar ways, there are some differences which
are explained below.

Their common feature is that they all require the details of the window/
icon/menu/sub-menu to be entered into a parameter block before making
the SYS call (and the block is identified as input parameter R1 of the call).

We will be looking at window, icon and menu design in greater detail in
later chapters but at this point it is worthwhile to look at the general
processes involved.

Windows
As was said above, windows need to be defined before they can be used.
To define a window, a parameter block needs to be loaded with quite a lot
of data in a very specific way. The usual programming practice is to
construct at least one DEF FN to do this - so that it (they) can be used time
and again for as many windows (and programs) as you like.

(The reason why more than one such DEF FN might be needed is a
pragmatic one. Many windows, for instance, are very similar apart
from a few parameter block differences, so a simple DEF FN with few
parameters can be of real use. However, sometimes this simple
approach will not suffice and hence an additional DEF FN might be
desirable - to offer wider choices.)

2. Why use Dr Wimp?

28

In the above listing, such a DEF FN starts at Line 1150 and is called at
Lines 120 and 230. It would, of course, be more normal to hold this type
of DEF FN in a Library.

By following the REM comments in the DEF FN, you can see that a wide
range of a window’s characteristics are simply loaded into the ‘temporary’
block DataBlock% at the right places - as detailed in the PRM of course.
For instance, the first 48 bytes of the parameter block are mainly taken up
with the work area and window sizes and on-screen position, together with
the colours to be used for the background, title bar etc.

The parameter block entries at bytes 28 and 60 (at Lines 1290 and 1460 in
the listing above) concern the ‘Window flags’ and ‘Work Area flags’.

‘Flags’ of this type are a very common feature of SYS call parameters. It is
simply a shorthand description of the technique of using the individual bits
of a data byte (or more) to decide whether a certain feature is present or
not.

A 4-byte ‘word’ is often used for this purpose and then the particular
combination of set/unset bits is, of course, directly represented by a
specific integer number. Hence it is common to see flag entries simply
shown as a number - as with &FF000012 in Line 120 and &84000012 in
Line 230 - both passed to Line 1290. (There are library routines or small
utilities available to construct the required flag numbers.)

The ‘Window flags’ use the four bytes (32 bits (0-31) starting at Byte 28
of the parameter block. The PRM details the meaning of each bit when set
and it covers such things as: Is there a title bar/scroll bars/ back icon? Can
the window be moved? and many more.

The ‘Work Area flags’ use a similar process to define the reaction of the
window work area (i.e. its background) to mouse-clicks. In essence,
precisely how mouse-clicks are reported by the Wimp to the task via the
Wimp Poll. This is called the window’s ‘button type’ and is an important
feature of both window and icon design. Appendix 4 gives detailed
information.

Having done all the work to load the parameter block, a very simple call to
SYS “Wimp_CreateWindow” is made at Line 1600 - identifying the
parameter block and telling the Wimp to put its output parameter R0 into
the integer variable WindowHandle% which is used here as the return
value for the FN.

2. Why use Dr Wimp?

29

In common parlance, the SYS call has returned, in R0, a ‘handle’ for the
window. This handle is, in fact, simply the start address of the Wimp-
assigned memory block now containing the window definition.

Thus, the Wimp has read all the data in the ‘temporary’ block
DataBlock% and created the window definition in a new memory block -
unique for that window - and then tells us this location by returning the
address in output parameter R0.

DataBlock% can therefore be used again to create other windows (or for
other purposes). In our case, we create two windows and assign their
handles to TestWindow% and Info% respectively. (It is normal to give
handles meaningful names. It helps considerably.)

These handles are then used for all future references to the windows in the
program. (It is a very similar concept to the ‘channel’ returned in Basic when
opening a file for access.)

Handles are also commonly used for icons and menus as will be seen
below.

Don’t forget that the window creation process only defines a window - it
doesn’t display it.

Icons
Icons are defined in an entirely similar process, including the use of a 32-
bit parameter block location for ‘flags’ - this time called the ‘Icon flags’
and which now include the ‘button type’ (see above).

The only additional aspect is that the programmer has the option of
including icon definitions one by one at the end of the definition of their
parent window, or to define them separately. It makes no difference - other
than that, in the latter case, you have to tell the Wimp the window in
which to create an icon, by passing the corresponding window handle.

In the above listing, they are created separately. The corresponding
DEF FN starts at Line 1660 and this is called once at Line 190, several
times in the loops between Lines 270-340 and once again at Line 380.
Note that the first parameter passed is the window handle.

2. Why use Dr Wimp?

30

We will return to Lines 270-340 a little later but, for now, it is clear that
this particular program only intends to make use of the returned icon
handles in the first and last cases (Icon1% and IconBar%) - because the
handles for the icons in the Info% window are all, in turn, assigned to
Dummy% and hence all but the last in the loop will be lost.

With icons, the Wimp only makes their handles unique within any one
window and, in fact, the icons are simply numbered from 0 upwards in
each window and these numbers are the handles. (Indeed, it is far more
common to use the term ‘icon numbers’ rather than ‘icon handles’, but they are
synonymous.) So, an icon needs both its window handle and its icon handle/
number for unique identification.

With window handles, the programmer is usually content to assign a
handle to a variable and use that variable name to refer to the window -
probably not even knowing the actual value which has been assigned by
the Wimp as the handle. However, with icons, the programmer is often
very interested to know the actual icon number (handle) and also needs the
means to change it (icon renumbering) to help ease the programming task.
Appendix 7 looks at this in detail.

You may be a little surprised by the use of FNcreateIcon to define the
application’s iconbar icon. The iconbar is merely a special type of window
(permanently open and whose handle, for icon creation purposes, is -1 for
the right-hand side and -2 for the left-hand side). Because the iconbar
window is always open, the icon creation of Line 380 will cause that icon
to be displayed immediately i.e. the icon will ‘install itself on the iconbar’
in the usual program-loading way.

Finally, note that the same parameter block, DataBlock%, is used for all
the window and icon creations in the above. (If you include the icon
definitions within the window definition you might well need a parameter block
larger than ‘one page’.)

2. Why use Dr Wimp?

31

Menus
Both menus and sub-menus are defined with a very similar process
initially i.e. their detailed description is loaded into a parameter block
which is then identified in a SYS call. ‘Menu flags’ are also involved.

However, there are some important differences from windows and icons:

- creating a menu or sub-menu also displays it on the screen;

- the parameter block(s) used need to be available exclusively for
each menu and any submenu(s) whilst they are being displayed.

These differences usually mean that separate parameter blocks are set up
for the exclusive use of menus/sub-menus - with the number of blocks
being at least equal to the maximum number of menu/submenus intended
to be visible at the same time i.e. at least the number of the largest menu
‘tree’. This also means that the addresses of these blocks can act as the
menu/sub-menu handles.

In the above listing, only one menu is used - from the iconbar - and only
one sub-menu can appear (either from the ‘Info’ or ‘Sub-menu’ items on
the main menu).

We can therefore afford the luxury of two exclusive parameter blocks -
MenuBlock% and SubMenuBlock% dimensioned at Line 690 - which are
loaded with the required data by a suitable DEF PROC at Line 1880 (called
at Lines 430-470) and left loaded permanently. The data block names
(which are integer variables containing the memory addresses, of course)
then serve as the menu/sub-menu handles.

When the menus need to be displayed, PROCshowMenu (at Line 2480) is
called and its first parameter is the required menu handle - followed
simply by the required screen position.

In a program with many menus using the same blocks and/or with menus
that may need last-minute (i.e. ‘dynamic’) changes before display, the
parameter block loading would need to take place just before display each
time - but the principles are the same.

2. Why use Dr Wimp?

32

Putting text in icons and menus
There are two ways of putting the text into icons and menus.

If the text is no more than 11 characters (plus a terminator character, added
automatically) and it does not need to be changed during the program run,
then this ‘fixed’ text must be included during the icon/menu creation stage.

However, if the text is longer than 11 characters or it needs to be changed
during the program run, then ‘indirected’ icon/menu text is needed.

This second method requires the text to be put into a separate parameter
block (often called a ‘buffer’ for this usage) and then the Wimp is simply
told, in the icon/menu definition, the address of this buffer and the
maximum number of characters allowed - which can be up to 256
including a terminator. Having done this, you can then alter the contents of
the buffer at any time - up to the limit of the defined maximum size - and
the icon text is changed correspondingly the next time the appropriate part
of the window is displayed/redrawn.

The !RunImage listing of !TestApp1 uses the second method for the
single icon in TestWindow% (at Lines 150-190) - and uses the first
method to put text into the Info window icons (at Lines 270- 340). The
particular way of using the first method - via DATA and READ statements -
is fairly easy to follow in the listing. This method is quite popular for the
Info window, because the text will not change during the run of the
program. Should, for instance, a version update occur, it will then be easy
just to change the DATA lines.

For simplicity, the first method is used again for all the menu text.
However, the detailed process for menus is somewhat more circuitous
because each item on the menu needs to have its own menu flags and any
sub-menus need to be specified.

Again, a very common way of handling this is with DATA statements
detailing each menu item as a set of three values - two integers and a
string each time. These are then incorporated into a parameter block prior
to the SYS call to construct the menu.

2. Why use Dr Wimp?

33

The DEF PROC actioning this starts at Line 1880 (called at Line 440 and
Line 470) and the DATA statements are at the end of the listing (Lines 3030
and 3040). From this you will see that, even in this simple case, you will
need your wits about you to construct the parameter block - and, even with
a decent library function to do that, you would need to understand fully
what is needed for the SYS call.

Use of libraries
Clearly, with so many parameters to handle, the creation of windows,
icons and menus form a major reason for producing libraries of
DEF PROC/FNs for the purpose. You will run across many different ones,
each with their own pros and cons.

Generally speaking, if you are going to program this way, it doesn’t matter
greatly which library you use as long as you are familiar with it. Each
library usually comes as a consistent set of functions covering quite a wide
range of needs - but it is very important that you don’t mix and match
libraries in the same program!

As we shall shortly see, Dr Wimp takes the idea of libraries at least one
stage further, and better.

2. Why use Dr Wimp?

34

The Wimp poll
After all this setting up, the Wimp poll loop at Lines 510-530 looks like an
anti-climax! But a peek at PROCpoll itself (starting at Line 840) shows
that it is indeed the heart of the program.

The first of the parameters passed with the call to SYS “Wimp_Poll”
itself is a ‘mask’ whose role is to filter out any Reason Codes (see
previous chapter and Appendix 2) not required by the program.

Not all Reason Codes can be filtered, but several can and it is sensible to
tell the Wimp not to send them to your application if you are not going to
use them. In particular, the Null Code (Reason Code 0) is frequently a
prime candidate for filtering (and Dr Wimp automatically does this in certain
circumstances - see Chapter 4).

Just as with the ‘Flags’ described a little earlier, the individual bits of a 32-
bit ‘word’ are set/unset to determine which particular Reason Codes are
masked out or not. Thus the mask translates into an integer number.

In the listing, Codes 0, 4 and 5 have been chosen to be masked - and
setting bits 0, 4 and 5 (and unsetting the rest) gives a mask value of &31.

As indicated, some Reason Codes cannot be masked and therefore some
of the 32 bits must always be zero (see Appendix 2).

The second parameter passed to the SYS call simply tells the Wimp the
address of the data block to be used for passing any detailed information.

Dealing with the Reason Codes
Lines 860-910 deal with specific Reason Code returns in a typical
CASE ... ENDCASE construction. Only Codes 2, 3, 6 and 9 are dealt
with in the listing. There is nothing wrong from a program viability
viewpoint in simply ignoring other codes even if they are not masked out.

For each Reason Code there is some defined action. Thus, the program
action is exactly as shown in the earlier flow diagram - PROCpoll is
called repeatedly and, each time, the Wimp will send back a Reason Code
if appropriate (and if it hasn’t been masked). The specific action (if any)
for that Code only is then carried out by the program and PROCpoll exits
- back into the loop, normally to be called again. Thus, conceptually, a
Wimp program can be said to proceed in short bursts of activity.

2. Why use Dr Wimp?

35

Main program operations
In our listing, action can only start by clicking a mouse button over the
iconbar icon. The Wimp will then duly return Reason Code 6 - “mouse
click”. More than that, the Wimp will also load up the data block
(identified to it in Line 850) with a lot of useful information e.g. the
pointer x/y coords, which button was pressed, window handle and icon
handle (over which the button was pressed).

The programmer then extracts any of this data from the parameter block
and makes use of it as required. In our case, starting at Line 2170,
whatever button is pressed, the reaction is only to call PROCIconBar, but
passing as the parameter the contents of DataBlock%!8 - which (the
PRM tells you) is the information on which button was pressed. A value of
1 means <adjust>, 2 means <menu> and 4 means <select>.

Moving on to PROCiconBar at Line 2300, we see that for <select> or
<adjust> we want to open the main window, whilst for <menu> we want
to call PROCshowMenu (which displays the menu). Note that only one of
these things will happen this time round the loop. After opening the
window or the menu, the response to Reason Code 6 has finished and that
particular pass of the PROCpoll loop ends.

If we clicked with either <select> or <adjust> the sequence at Lines
2350-2380 would be followed . Before the SYS call to open the window,
the data block needs to be loaded. This is done by telling the Wimp the
window handle to use and then calling SYS “Wimp_GetWindowState”
(Lines 2350 and 2360). This loads the block with the ‘last known state’ of
the window - which, in this case, is the state it was created in (but it might
not always be that). To be absolutely sure, the block then needs to be
modified (at Line 2370) to tell the Wimp to open the window on top of
any others, before the actual SYS call to open it. When displayed, you will
see that our previously created icon is duly in the window.

This may seem a tedious routine, but it is the only way to tell the Wimp
precisely which window (of many it may be handling) is to be opened -
and how.

Had we clicked with <menu>, the iconbar menu would now sit on the
screen awaiting further action - hopefully a mouse click over one of its
items/sub-items in order to make a menu selection. A mouse click over a
displayed menu generates the Reason Code 9 - “menu selection” and this
time Line 900 takes us to PROCmenuSelect at Line 2660.

2. Why use Dr Wimp?

36

Once again, the Wimp will have loaded the Wimp poll data block with
useful information - in this case, which item(s) of the menu tree have been
selected. In our listing - which, at most, can only have one menu item and
one sub-menu item selected - these two items are first extracted at Lines
2690 and 2700 before further processing. (Had we merely slid to the right on
the ‘Info’ item, the Info box would have been displayed and we would not
normally need to make a selection on this tree.)

If we had slid to the right across the ‘Sub-menu’ item, the sub-menu would
have been displayed and let’s assume that we had clicked on ‘Item 3’ in
this sub-menu. Lines 2690 and 2700 would therefore extract main menu
item 1 (first in the list is 0) and sub-menu item 2. These values are then
used in Lines 2780-2810 to extract the submenu item text from the sub-
menu data block which was set up at Line 470. This text is then put into
the indirected text buffer of the single icon in the main window - but this,
in itself, does not cause the changed text to be displayed.

The sequence in Lines 2830-2870 then merely causes that window to be
displayed/re-displayed to show the changed icon text. (There are much
better ways of re-displaying changed icon text - but a full window closing/opening
is as good as any for a small window with only one icon.)

Finally, had we selected the ‘Quit’ item from the menu i.e. item 2, the sole
action is to change the Quit% flag to TRUE - which means that the
PROCpoll loop at Line 510-530 will be bypassed and the application
closed via Line 570.

(You may also wish to note that this application cannot be closed from the Task
Display. The significance of this is commented on a little later.)

2. Why use Dr Wimp?

37

Review of process
The above description of !TestApp1 has been given in some detail
deliberately to demonstrate both the Wimp process and its typical
programming needs. Bear in mind that the application is very simple and
we have not explained every nook and cranny - and yet there is an awful
lot of parameter block loading and extraction needed, both in the initial
window/icon/menu definitions and in the run of the action.

You will also possibly have begun to notice in the listing that some of the
parameter block loading needs are very similar to each other e.g. the
similarity between the window and icon creation parameter blocks in
some places. It goes much deeper than this: the patterns of data entry/
extraction are kept identical wherever possible - merely all being copied,
perhaps, between different calls. This doesn’t relieve the programmer from
the need to keep track of what is going on but it makes the tedium of
parameter blocks at least logical and the patterns capable of being
assimilated as time goes by.

The sense of using libraries of proven functions also becomes obvious.

2. Why use Dr Wimp?

38

!TestApp2
Now let’s compare the !RunImage listing of !TestApp2 (on the supplied
floppy disc or CD-ROM) with the above. The only difference in the
approach is that this time the window and icon definitions have been
prepared in advance outside the program and stored in a window template
file - called “Templates” - held in the application directory.

Producing window definitions from a template editor is looked at later in
the book - so accept for the moment that the same windows as used in
!TestApp1 are held in Templates.

A quick glance at the !RunImage listing of !TestApp2 will reveal that
the main area of change is in the sequence in Lines 110-200 and the
consequential elimination of the long DEF FNs to create the windows and
icons. Indeed, the !RunImage is now some 60 lines (20%) shorter.

The SYS call strings starting at Line 110 are almost self-explanatory. The
template file is first opened and then, in turn, each window definition is
loaded into the application and created as before. In effect, the loading
from the template file automatically loads the ‘temporary’ parameter block
DataBlock% with all the data before the window is created. As before,
the output from the creation is the unique window handle returned in R0.

The process is much simpler but it is not entirely painless. Separate blocks
are needed to hold any indirected window/icon data during the loading
process - and these need to be large enough. Handling these is not without
its pitfalls (particularly if outline fonts are to be used) and reference to the
PRM is essential to steer the way through. In our case, the program is
simple and exclusive extra data blocks have been set up in PROCinit.

There is also one change in the program action which is consequential on
using window/icon templates and it is worth noting because it is a typical
consequence.

It arises because, by preparing a window template, we no longer know the
name of the buffer which holds the indirected text of the icon in the main
window. Such a buffer necessarily still exists, but it is created
automatically by the Wimp on loading the template.

2. Why use Dr Wimp?

39

So, how do we get at this buffer to change the indirected text? Have a look
at PROCmenuSelect in the !RunImage of !TestApp2:

2040 DEF PROCmenuSelect
2050 REM** Responses to menu/sub-menu selection.
2060
2070 MainSelectItem%=!DataBlock%
2080 SelectedSubItem%=DataBlock%!4
2090
2100 SYS “Wimp_GetPointerInfo”,,DataBlock%
2110 Button%=DataBlock%!8
2120
2130 CASE MainSelectItem% OF
2140
2150 WHEN 1
2160 Ptr%=SubMenuBlock%+28
2170 ItemStart%=Ptr%+24* (SelectedSubItem%)+12
2180 Item$=$(ItemStart%)
2190
2200
2210 DataBlock%=TestWindow%
2220 DataBlock%!4=0
2230 SYS “Wimp_GetIconState”,,DataBlock%
2240 Pointer%=!(DataBlock%+8+20)
2250 $(Pointer%)=Item$
2260
2270 SYS “Wimp_GetWindowState”,,DataBlock%
2280 DataBlock%!28=-1
2290 SYS “Wimp_CloseWindow”,,DataBlock%
2300 SYS “Wimp_OpenWindow”,,DataBlock%
2310
2320 WHEN 2
2330 Quit%=TRUE
2340
2350 ENDCASE
2360
2370 IF Button%=1 THEN

PROCshowMenu(MenuBlock%,0,0)
2380
2390 ENDPROC

2. Why use Dr Wimp?

40

Line 2230 has the answer. We now have to locate that buffer by calling
SYS “Wimp_GetIconState” which loads up the data block with full
information about the icon - and the text buffer location is held at Byte 28
(so the PRM tells us).

You will also see, a few lines on, that there is a similar fact-finding SYS
call for windows - and you will not be surprised to know that there is an
equivalent for menus as well.

So, in summary, the window/icon definition process is easier using
templates - and this is almost universally the practice. However, there are
some consequential prices to pay (some of which do not appear in our
simple example).

(This application cannot be closed from the Task Window either!)

2. Why use Dr Wimp?

41

!TestApp3
This is the demonstration application produced using Dr Wimp
(Version 3.80) to achieve the same results.

Note first that the !RunImage is much shorter - only just over 200 lines.
But now the DrWimp library is an essential partner - and this is very long.
So, as you might expect, we are paying for ease of use by needing more
program space. (Using some of the supplied utilities - after completing a
program - the required program space can usually be very much reduced, as
Chapter 16 will show.)

Looking at the !RunImage in more detail, the main program structure is
contained within Lines 10-120 - a dozen lines only (and half of those are
non-executive!).

The DrWimp library and ‘wimp-functions’
In particular, Line 40 calls the DrWimp library, which normally resides (as
here) in the same directory as the !RunImage - but it doesn’t need to. This
library mainly comprises a large number of DEF PROC/FNs whose names
all start with wimpxxxxxxxx (all in lower case). In Dr Wimp parlance,
these are called ‘wimp-functions’ and nearly all of them are available to be
called from your !RunImage - just like any other library. There are also
some subsidiary ‘internal’ DEF PROC/FNs in this library i.e. routines supporting
the wimp-functions but not intended to be called directly by the user/programmer.

The ‘user-functions’
Then, from Lines 170-1970 of the !RunImage, there are over thirty
DEF PROC/FNs all starting with user_xxxxxxxx (again, all lower case) -
and most of them empty. These are called the ‘user-functions’ and they
work the other way round i.e. the user-functions are called by one or
another of the ‘wimp-functions’ in the DrWimp library.

This means that it is essential that all the Dr Wimp user-functions are
always present in your !RunImage even though any or all of them may
remain empty. (It is perhaps now also obvious that the list of user-functions in
the !RunImage must be kept compatible with the particular version of the
DrWimp library being used.)

2. Why use Dr Wimp?

42

In fact, as will be explained later, all the programming undertaken by the
programmer will normally only involve filling these user-functions - but
not necessarily all of them.

The ‘app-functions’
After the user-functions is a DEF PROC starting with app_xxxxxxxx (and
not all in lower case). This is a function which has been created by the
application programmer (as opposed to the Dr Wimp author) for this
particular application - as a result of filling one of the user-functions. In
anything other than a simple application there would be many ‘app-
functions’ - to structure the program sensibly. These app-functions are
likely to make heavy use of the many wimp-functions available.

However, the use of the prefix app_ is purely a whim of this book’s
author, to help distinguish which things are from Dr Wimp and which are
not. It is suggested that you adopt a similar policy when using Dr Wimp.

Don’t forget: the order of the user- and app-functions in the
!RunImage listing is not important - but all user-functions must
always be present.

Brief program description
For this chapter, we need only give an overview of the Dr Wimp process - leaving
more detail to later.

The early action takes place within PROCuser_initialise - which,
remember, is called automatically from somewhere within the DrWimp
library. (In this case, within DEF FNwimp_initialise - which is itself
called at Line 80 of the !RunImage.)

From the meaningful PROC/FN names used, you will be able to follow the
action easily. For instance, FNwimp_loadwindow (at Lines 240, 250)
looks as if it returns a window handle and therefore you will probably
guess that it combines the template loading and window creation steps into
one - and you would be right! Its parameters are simply the template file
path and the particular window name on that file. It really is as simple and
painless as that.

2. Why use Dr Wimp?

43

Again, FNwimp_iconbar (at Line 320) puts a named icon onto the icon
bar - no fuss!

Even better, FNwimp_createmenu (at Lines 360, 370) does the same for
menus, and if you want to attach a submenu - or, indeed, a window - to a
menu item then PROCwimp_attachsubmenu (at Lines 410, 420) does
that. But note that these menu actions only define the menus/sub-menus and their
structure. With Dr Wimp, the display of the menus is dealt with separately - by
FNuser_menu, see below.

These few lines have already set everything up - without a mention of
parameter blocks!

Returning to the user-functions, you will see that - in addition to
PROCuser_initialise - three others contain additional program lines.
They are:

DEF PROCuser_mouseclick
DEF FNuser_menu
DEF PROCuser_menuselection

and, as their names suggest, all of the actions for the user to operate the
program are now contained in these.

FNuser_menu is called by somewhere within the DrWimp library every
time the <menu> button is pressed - and note that the call will be passing
to you, the programmer, active values in its parameters. In this case, it will
be the window and icon handles over which the button press occurred.

If you, the programmer, leave DEF PROCuser_menu empty then nothing
more will happen - it will return zero to whatever called it in the DrWimp
library. However, if you put some action into the DEF FN and cause it to
return a valid menu handle, then that menu will be duly displayed when
you press the <menu> button. As you can see at Lines 750-780, the listing
checks that it is the iconbar window and then returns the iconbar main
menu handle. (No need to check which icon in this case as it can only be one.)

Very similar action occurs in PROCuser_mouseclick - which is called
from the DrWimp library whenever the <select> or <adjust> button is

2. Why use Dr Wimp?

44

 clicked. As you can see, the listing checks that the window is the iconbar
and, if so, it opens the main window with the wimp-function
PROCwimp_openwindow passing it the required window handle. No
bother about getting the window state or loading a parameter block!

The listing has a little more in PROCwimp_menuselection, but it is
equally easy to follow. The call from the DrWimp library passes the handle
of the actual menu from which the selection was made and the number of
the item selected from it i.e. if the selection was from a sub-menu it is the
sub-menu handle and item which will be passed.

The listing, at Lines 1010-1180, needs to cope with both menu and sub-
menu selections. It does this by using a straightforward
CASE ... WHEN ... ENDCASE construction which checks which menu
and item is involved and takes action correspondingly.

For example, if ‘Quit’ was selected from the main menu (Item 3 - the top
item is 1 in Dr Wimp) then PROCwimp_quit(0) is called - to quit the
program.

However, if the selection had been from the sub-menu then the tick against
the selected sub-menu item is first changed to reflect the selection and the
text of that item is retrieved and put into the main window icon. All these
actions are carried out with simple wimp-function calls.

In particular, look at PROCwimp_puticontext. Not only does this
change the text in the icon but, if the window is open, it updates the
display as well - again, a lot of hassle done automatically for us.

At Line 2020 is the one and only app-function DEF in this listing, which is
called at Line 280 in DEF PROCuser_initialise. This app-function
also uses PROCwimp_puticontext: this time in a loop to put the text
into the Info box. Compare this with what we needed to do in
!TestApp1.

(Finally, !TestApp3 does close from the Task Display properly! To put you out of
your misery, this means that, unlike the first two examples, a Dr Wimp program
automatically incorporates the Wimp Messaging system - see Appendix 10.)

2. Why use Dr Wimp?

45

Review of the three methods
Even with this simple application, comparing the three methods of
achieving the same end shows the main advantage of using the Dr Wimp
package - its sheer ease of use compared with ‘do-it-yourself Wimp
programming.

Gone is all the grind of dimensioning the various memory blocks,
repeatedly loading them accurately and then making the right SYS call
properly. All this detail is carried out automatically behind the scenes in
the DrWimp library.

Similarly, all involvement in the Wimp Poll, Reason Codes and extracting
and interpreting what is put in the parameter block by the Wimp is entirely
invisible to the programmer. This is hidden behind the user-functions,
which are much more programmer-friendly.

Another advantage is that the !RunImage contains only higher-level code
- primarily comprising wimp-functions with their self-explanatory names
and parameters. Understanding and keeping track of the program is
therefore also much easier.

This demonstration has used only a handful of the many available wimp-
functions in the DrWimp library - enough to do most things you are likely
to need. See Section 3 of the Dr Wimp manual for a complete list - or use
!Fnc‘n’Pre. But if you do ever have a need for something which is not
covered by the wimp-functions, then there is no difficulty in adding your
own Basic routines - and the later tutorial program contains an example. In
this respect, Dr Wimp is ‘non-limiting’.

Note also that in comparing !TestApp1 and !TestApp2 the big
advantage of using a template file to define the windows/icons separately
was somewhat offset by the added complication of handling the
consequential indirected data. When we came to !TestApp3 the
advantages of templates was enjoyed without the disadvantages - with the
difficult outline font handling also taken care of into the bargain.

For the newcomer to Wimp programming, perhaps the biggest advantage
of using Dr Wimp is that something tangible can be reliably produced on
the desktop screen within a few minutes of dabbling. The tutorial which
comes with the package demonstrates this very effectively.

2. Why use Dr Wimp?

46

This is a great confidence-builder. The newcomer may not fully
understand what is happening at that stage but it is much easier to find out
when a successful step (however small) has been achieved.

By the same token, the more you use Dr Wimp the better will become
your understanding of Wimp programming in general. With the coding of
the DrWimp library fully accessible, you will be able to see how things are
done.

Finally, whichever of the three methods is used, you do have to know
either which SYS calls or which wimp-functions exist, what they do and
how to use them. With !TestApp1 and !TestApp2 the only real source
of the necessary information is the (somewhat daunting) PRM. In contrast,
for !TestApp3 the equivalent items are the wimp- and user-functions, of
which there are relatively few and they all have meaningful names.

On this aspect, Dr Wimp wins hands down. You will be surprised how
quickly you will remember all the common wimp-functions and if you do
need to jog the memory, the package comes with an excellent on-screen
index of all the wimp- and user-functions, with built-in browse and search
facilities - via the utility !Fnc‘n’Pre. Alternatively, if you prefer,
Section 3 of the Dr Wimp manual contains the same information in list
form.

“O.K. You’ve convinced me!” - I hear you say!“So tell me more - and
how do I start to use Dr Wimp?” Read on…

2. Why use Dr Wimp?

47

3. What’s in the Dr Wimp package?

The Dr Wimp package is a Freeware Public Domain (PD) package
originally authored by Andrew Ayre and, from May 1999, supported by
Ray Favre. A disc containing the latest version of the package comes with
this book and can also be obtained by post, Email or the Internet. (The
contact addresses are given in the front of the book.)

When you ‘open’ the disc root directory you should see something like
this:

These folders etc. contain the following:

!!ReadMe!! Contains a summary of the package contents and the
important distribution conditions of the author.

!MyApp The Dr Wimp standard ‘blank’ application - explained later
in this book. Most importantly, this application contains the
DrWimp library i.e. what the fuss is all about!

3. What’s in the Dr Wimp package?

48

Documents Primarily contains two versions of a tutorial manual -
one in plain text format and one in Impression Publisher format.
Also contains !Fnc‘n’Pre (the onscreen reference utility for the
up-to-date list of user- and wimp-functions) and its StrongHelp
equivalent FuncProc. In addition there are notes on the version
history of the package, upgrading instructions for the various
versions, a note on the importance of using certain utilities and,
finally, the contact addresses for the package author together with
certain accreditations.

Examples Contains almost 30 example applications prepared using
Dr Wimp - all of them with their !RunImage well-commented to
help you follow what has been done.

Tutorials Contains window template files and progressive listings
for the tutorials in the on-disc manual (see “Documents” above).

Utils Contains the utility applications which are regarded as part of
the total Dr Wimp package and each is described in more detail
within this book. They are:

!StrongBS (by Mohsen Alshayef)

!CodeTemps

!Crunch (by Bernard Jungen)

!Fabricate

!Linker

!MakeApp 2 (by Dick Alstein)

!TemplEd (by Dick Alstein)

!UnCrunch (or !CrunchFix) (by Jim Hawkins)

Please note that all of these utilities are PD of one form or another
and each has its own distribution conditions - which are contained in
files within each utility application.

3. What’s in the Dr Wimp package?

49

The DrWimp library
The heart of the package is the DrWimp library - on the surface, a
conventional Library in the Basic sense i.e. simply a listing of
DEF PROC/FNs any of which may be called from another Basic program
once an appropriate LIBRARY (or INSTALL) call has been set up.

However, the DrWimp library is far from conventional in other respects
and it is essential to realise that it does not ‘stand alone’. As will be
explained, it can only be used in partnership with a program which itself
contains certain specific, corresponding DEF PROC/FNs i.e. the user-
functions. All will become clear in due course - but it is this feature which
makes it so powerful and sets it apart from normal Wimp ‘shell’ programs.

This book is based on Version 3.80 of the Dr Wimp package, issued in
June 1998. (If a later version is available at the time of sale, a copy of this will
be included.)

3. What’s in the Dr Wimp package?

50

3. What’s in the Dr Wimp package?

51

4. Getting started with Dr Wimp

The Dr Wimp package comes with this book, so the first step is to copy
(and de-archive) the disc contents across to your hard disc.

At the time of writing the current version of the package was Version 3.80.

(Note that it is the DrWimp library version which defines the package version)

Tutorial in Dr Wimp Manual
A very useful tutorial sequence is described in the disc-based user Manual
in the package. Inevitably, this book will be overlap some of that tutorial
activity, but to gain familiarity with the basic package some overlap will
do more good than harm.

The main parts of Dr Wimp
As Dr Wimp is primarily an aid to help you make Wimp applications, this
book is going to do just that. It will develop a complete application step by
step over several chapters, as a vehicle to show how Dr Wimp is used in
practice and to introduce its main facilities comprehensively.

4. Getting started with Dr Wimp

52

To get started, we need to get to grips with three parts of the package.
They are:

The “DrWimp” library (a special library of Basic DEF PROC/FNs).

The skeleton Wimp application called “!MyApp”. This contains a
skeleton !RunImage Basic program plus the above library. (The
!RunImage will be expanded by the programmer to form the
main application program.)

The Window Template editor !TemplEd (supplied with the package,
in the “Utils” directory).

As has been stressed already, it is vital to appreciate that the first two
items are an inseparable pair. The library and the !RunImage program
both contain DEF PROC/FNs and each calls PROC/FNs held in the other.
The following diagram shows the relationship schematically:

!MyApp

DrWimp!RunImage

‘user functions’
filled by user with
‘wimp functions’

(& ‘app-functions’)

Library of

‘wimp-functions’

Calls both ways

So, the DrWimp library is not a conventional, free-standing library which
can be used independently with any program - and therein lies the power
and ease of use of the package.

When the DrWimp library is upgraded, if you already have a
completed application authored with Dr Wimp (and you wish to
upgrade the

4. Getting started with Dr Wimp

53

application) it is quite likely that the !RunImage of the existing
application will need to be upgraded correspondingly. For example,
an upgrade might introduce a new user-function or change the
parameters of an existing user- and/or wimp-function. (The
Upgrading file in the Documents folder always tells you exactly how
to upgrade an existing application. It is usually very simple.)

You will therefore appreciate immediately that an application will
inevitably come to grief if it was prepared with an earlier version of
the Dr Wimp package and an attempt is made to run it with a later
version of the DrWimp library without upgrading its !RunImage in
accordance with the Upgrading file.

For this reason, all upgrades of DrWimp are issued as a complete new
Dr Wimp package - together with instructions about how to upgrade
existing applications, if necessary.

As we have already seen, it is best to use a template editor to design an
application’s windows/icons. Any RISCOS-compatible template editor
will do, but as !TemplEd comes with the package and is very good, this
book will be using it to prepare the project application.

Format of Dr Wimp’s functions
As has been touched upon briefly in an earlier chapter, the user-functions
and wimp-functions provided in the Dr Wimp package are all named
meaningfully and consistently, using lower-case entirely.

User-functions defined in the skeleton !RunImage program (within the
!MyApp application directory) are all in the form:

PROCuser_dosomething e.g. PROCuser_menuselection

and wimp-functions in the DrWimp library are all of the form:

PROCwimp_dosomething e.g. FNwimp_createmenu

Broadly speaking, the wimp-functions do all the tedious work and we call
them from within the user-functions - to steer the application at a higher
(and simpler) programming level.

4. Getting started with Dr Wimp

54

Inside the DrWimp library you will find a listing of numerous wimp-
function definitions. Section 3 of the Dr Wimp Manual (and the utilities
!Fnc’n’Pre and FuncProc) describes all of the user- and wimp-functions
available to the programmer for the Dr Wimp version for which they are
relevant. (Not all wimp-functions are intended to be called by the
programmer - a few are designed only to make the Dr Wimp author’s task
easier. These do not appear in the Manual etc.)

Inside the skeleton !RunImage file there is a very short main program
listing (which we will look at soon) followed by all the user-function
DEF PROC/FNs - all of which start off empty. (Appendix 8 specifically
examines user-functions.)

Closer examination (if you are so inclined) will show that each user-
function defined in !RunImage is called from within at least one of the
wimp-function definitions in DrWimp. This provides the inseparable
linking in the package and, remembering that all the user-functions start
off as blank, it is the contents of the user-functions which are built up by
the programmer to achieve the required end result.

A corollary to this is that although there is a need to become familiar with
what most of the wimp-functions do and, indeed, to call them - it is very
important that you do not attempt to alter the DrWimp library coding or
to add/delete functions to/from it. This is because:

(a) the package author has constructed the wimp-functions to serve a
wide range of possibilities which may be demanded by different
applications. The result is that the coding is often not simple and
a change to a wimp-function needs to be done with full
knowledge of the consequences to the whole package; and

(b) later versions of the library will not be aware of any changes you
make - nor will your other programs made with the unaltered
library.

However, our need to know what each wimp-function does is very well
catered for by good documentation, including an on-screen browser -
called !Fnc‘n’Pre. In the early stages, it is worth having this active
while you are working with Dr Wimp and it is useful ‘homework’ to start
browsing it whenever you can. Section 3 of the Dr Wimp Manual contains
the same information, if you prefer.

4. Getting started with Dr Wimp

55

(Notwithstanding the above points, the DrWimp library listing is in an easily
readable form, so you can still examine the “how did he do that?” if you want to.
Further, the example programs in the package are well commented to show what
has been done.)

Book tutorial project
We are now going to start constructing an application with Dr Wimp in a
tutorial style - so as to introduce and examine its practical usage in a clear
and comprehensive way.

The accompanying disc contains the full listings (and successive updates)
of each step, as identified in the text.

The chosen tutorial application is not ambitious, but it is one we can all
relate to and it will certainly give enough scope for its purpose. It is an
application to allow a user to keep track of the fuel used by a car and to
show the average consumption etc. in graph form, which can be printed
out.

So, let’s define the objectives:

Initiate a file record for a vehicle;

Enter, update and save fuel consumption data;

Show appropriate consumption averages;

Show consumption data graphically;

Enable the graph to be printed.

The above features to be available for more than one vehicle.

4. Getting started with Dr Wimp

56

Initial planning
So, how will we want the program to operate?

To make this project representative of most applications, we will start it up
by double-clicking on a directory icon and see an application icon appear
on the iconbar. We will then use mouse-clicks and an iconbar menu to
open up appropriate windows on the screen, leading to the main actions.

So let’s start the ‘hands-on’ and see how these steps emerge.

First ‘hands-on’ steps
We need to start with a few house-keeping matters. Firstly, open a new
directory in a convenient place. Let’s call it “CarFuel”. Now copy !MyApp
from the Dr Wimp package across to it. From now on we’ll be working in
this new directory.

Open the copied !MyApp directory and note that it contains the following
files:

!Run
!RunImage
!Sprites
DrWimp

The first three items are found in virtually every Wimp application and are
part of the standard ‘application resources’ described in Appendix 3 in
detail. You will need to become familiar with their respective roles and we
will be looking at some of them below.

Load !RunImage into your favourite Basic program editor. As supplied,
the program listing is headed by the few lines below (but the details of the
version and date, etc. may be different):

10 REM>!RunImage - for DrWimp Library Version 3.80
**

20 LIBRARY “<MyApp$Dir>.DrWimp”
30 :
40 appname$=“MyApp”
50 ver$=“0.1 (31-Mar-03)”
60

4. Getting started with Dr Wimp

57

70 ON ERROR PROCwimp_error(appname$,REPORT$+“ at
line ”+STR$(ERL),1,1): PROCuser_error:
PROCwimp_closedown:END

80 task%=FNwimp_initialise(appname$,7000,300,0)
90 PROCwimp_poll
100 END

followed by the user-function definitions - all of which are ‘empty’ (except
for one case which we need not worry about yet). By ‘empty’, we mean
that if they are DEF PROCs they contain nothing other than ENDPROC - and
if they are DEF FNs they contain nothing but a return value of either 1, 0, -
1 or a null string, according to their intended usage.

As we have already seen in !TestApp3, the programmer’s task is to fill
any of these, as needed in the particularly application - but always being
careful to leave the others untouched.

From the above short listing you can see that the skeleton program merely
loads the DrWimp library, sets an application title in appname$, and then
calls three wimp-functions (held in the DrWimp library, of course).

Line 20 loads the DrWimp library and you’ll notice that, conventionally, it
refers to a ‘system variable’ MyApp$Dir, which is actually created in the
!Run file (and the !Boot file) - before the instruction to run the
!RunImage file. So, load the !Run file into a text editor also, to confirm
this (again, the details may vary):

Set MyApp$Dir <Obey$Dir>

IconSprites <MyApp$Dir>.!Sprites

WimpSlot -min 256k -max 256k

Run <MyApp$Dir>.!RunImage %*0

The first line sets the system variable MyApp$Dir and the last line runs
the !RunImage. (We need not worry about the other two lines at the moment.
They are covered in Appendix 3 - but it is worth noting that the second line,
indirectly, allows us to choose which sprite will be used to represent the
application in the directory display.)

4. Getting started with Dr Wimp

58

Looking at Line 40 of the !RunImage, note that, as usual, the title given
to the application lines up closely with the system variable name, the
application directory name and, in the !Sprites file, a sprite name - all
are variations of “MyApp”. So, our first action is to decide what to call
our tutorial application and then modify Lines 20 and 40 accordingly (and
the sprite, if we wish).

We have chosen “Fuel” for the (finished) application title. So, it makes
sense to name this version !Fuel4a - because this is Chapter 4 and it is
the first version of the application we have developed in this chapter. The
system variable can be Fuel$Dir and - when we get to it - the application
sprite will be called, correspondingly, !Fuel4a.

The !Run file thus needs to be modified to become:

Set Fuel$Dir <Obey$Dir>

IconSprites <Fuel$Dir>.!Sprites

WimpSlot -min 256k -max 256k

Run <Fuel$Dir>.!RunImage %*0

Then the two lines of the !RunImage program need to be changed
correspondingly to:

20 LIBRARY “<Fuel$Dir>.DrWimp”

40 appname$=“Fuel4a”

Now save the new application as !Fuel4a, rather than !MyApp.

4. Getting started with Dr Wimp

59

Finally, on the listings disc, the tutorial applications are all displayed with
their own sprite (meant to be a petrol station fuel pump!).

So the housekeeping also involves adding this sprite to the !Sprites file
and giving it exactly the same name as the application directory, but using
lower case i.e. !fuel4a in this case.

The housekeeping is finished but, at the moment, our customised
application will probably still appear with the old default RISCOS
application sprite, If you now <shift-double-click> on that it should
change to our unique petrol pump sprite.

It is best to carry out these house-keeping changes afresh at the start of the
development of every new application - and as it is the first time we have
come across them, we have changed them above ‘by hand’.

However, for later use, you may wish to note that the Dr Wimp
package comes with a helpful utility application called
!Fabricate which does automatically exactly what we have
just done (except for providing a new icon, of course) - and it
can do a lot more.

!Fabricate is in the ‘Utils’ folder of the DrWimp package and
is also described in Appendix 6.

4. Getting started with Dr Wimp

60

Error trap caution
You may have already noticed in the above short listing that the general
Wimp error trap (at Line 50) is located before Wimp initialisation takes
place (at Line 60). This means that you would be well advised not to alter
(or put anything between) lines 50 and 60 during your use of the package.
Any error occurring between or in those lines is very likely to lock your
program into an endless loop - requiring a reset.

First run
Although our new application currently does nothing useful, it is
important to understand and believe that the provided skeleton
!RunImage is already a complete Wimp program.

To prove this and also to check that our few changes are functioning as
they should, double-click on the !Fuel4a directory icon - and wrinkle
your brow for a moment at the apparent absence of any action! But if you
now open the Task Display (from the Task Manager’s iconbar menu),
you’ll see that the application is actually up and running and occupying
the space set in the WimpSlot line of the !Run file.

The only way to quit the application at the moment is to do so from the
Task Display. Do this. (Click <menu> over the “Fuel4a” entry on the Task
Display, then move off the menu to the right at the Task ‘Fuel4a’ item
to get ‘Quit’.) With most RISCOS versions you can also quit using the
<AltBreak> facility.

Logging on to the Wimp
Trusting that you are now a believer, let’s have a slightly closer look at the
listing so far. The all-important thing that happened on this first run, apart
from loading the DrWimp library, was in line 60:

60 task%=FNwimp_initialise(appname$,7000,300,0)

The wimp-function called in this line carries out a whole bunch of
initialisation tasks as well as logging on to the Wimp (the Window
Manager if you prefer, see Chapter 1).

The function returns a task identifier, or ‘handle’, to task%. Note that
appname$ is the first parameter - the Wimp requires to know the title of

4. Getting started with Dr Wimp

61

your application when you log on, and this will be the name shown in the Task
Display when the application is running.

The number passed in the second parameter is to reserve memory space
for window and icon definitions. (The number is also used to dimension the
general wimp parameter block in the program - and is always made to be at least
one ‘page’ - 256 bytes - in size.) At this stage the value 7000 (bytes) is safely
large and we can ignore it for some time yet.

The third parameter is the minimum RISCOS version usable by the
program, multiplied by 100. Here, version 3.00 is the minimum.

Note that this is not necessarily the RISCOS Version that you happen to be
using yourself - although it could be. It is the lowest RISCOS Version that
you want your users to be able to use when running your application on
their computers. The significance is that a few of Dr Wimp’s facilities can
only be used if the user has a RISCOS Version higher than a given value.
There are very few of these and the required RISCOS Version is clearly
noted in the Manual. (E.g. You need RISCOS Version 3.50 or higher to use
Dr Wimp’s ‘colour picker’ facilities - so you would need to use 350 in the third
parameter above in that case.)

As FNwimp_ initialise is the first wimp-function we have looked at
in any detail, it is worth noting that it perhaps typifies the way Dr Wimp
works. It is a simple Basic statement as far as we are concerned. But,
behind-the-scenes, it carries out out a lot of essential, tedious stuff on our
behalf.

If you look at the actual function definition in the DrWimp library, you will
be able to detect that, among other things, it sets up various parameter
blocks, including one for outline fonts, ensures the application gets service
from the Wimp messaging system and checks that the right OS is
operating. A lot of hair tearing avoided!

Finally, you will see that it also calls PROCuser_initialise - back in
the !RunImage and, as yet, empty.

This peek also serves to demonstrate the point that the package author has
designed a system to cater for many applications and this sometimes
results in some complexity in the wimp-function coding. (So leave well
alone!)

4. Getting started with Dr Wimp

62

The Wimp poll
Line 90 contains the other main action of the skeleton application. It calls
PROCwimp_poll, to start ‘asking the question’ repeatedly - see Chapter 1.
A quick look at the definition of this PROC in the DrWimp library will
again show that the package has a built-in structure to respond to the
majority of the Reason Codes that will be returned.

Whilst peeking at this, also note that, just before SYS “Wimp_Poll” is
called, a check is made on the state of three items to see if the application
currently has any need for Reason Code 0 - the very frequently occurring
Reason Code which merely reports ‘no action needed’ (see Chapter 1 and
Appendix 2).

It is sensible to ‘mask out’ this code if possible and in a Dr Wimp
application there are only three which need it - none of which apply to our
Tutorial exercise. If none of these circumstances exist then Reason Code 0
is masked out automatically.

Listing reference: The few steps we have taken so far merely
customise the skeleton application !MyApp supplied with the
package - but it is our starting point, so is worth keeping for
reference. It is !Fuel4a on the listings disc - indicating that it
is the first complete application arising in Chapter 4. (See
‘Conventions’ in the Introduction)

4. Getting started with Dr Wimp

63

Getting ready for successive versions
As we are going to develop several successive versions of the tutorial
application it will be sensible to take account of this at the outset, before
adding to the program functionally. The following points need to be
catered for:

- It would be wasteful to include the DrWimp library in every
version of the developing application. A single version will
suffice, which will mean that the LIBRARY call (at Line 20) will
need to be modified correspondingly. A sensible way to
implement this is to copy what the Dr Wimp author has done -
for the same reason - in the Examples directory of the Dr Wimp
package i.e. create a ‘mini- application’ called !DrWimpLib
which holds just the DrWimp library and a !Boot and !run file
both containing the single line:

Set DrWimpLib$Dir <Obey$Dir>

Once this application is ‘seen’, the system variable
DrWimpLib$Dir is set and holds the location of the DrWimp
library - which can then be referred to in our application’s
LIBRARY call. It is best if !DrWimpLib is in the same directory
as the various !Fuel application versions. It will then be ‘seen’
when you access these versions.

-A !Boot file should be added - to ensure that the application sprites
are ‘seen’ (see Appendix 3). It needs only have the single line:

IconSprites <Obey$Dir>.!Sprites

-It will be helpful to put an extra copy of the application sprite -
called, simply, fuel - in the sprite files. This will be used as the
common iconbar icon throughout.

-It will be convenient to use line numbers for references in the text
and, as the tutorial will add to the !RunImage progressively, it
is best if we use from the start the line numbers from the final

4. Getting started with Dr Wimp

64

listing. This will ensure that any references will remain constant
throughout the chapters. (However, please note that some
modern text/Basic editors use ‘auto-renumbering’ and this may
not allow you to choose individual line numbers. Worse still,
such editors may completely destroy the carefully preserved line
numbering of a listing loaded from the supplied disc.
Therefore, to follow the tutorial ‘hands on’, you are strongly
advised to use .‘Edit which is supplied free with every RISCOS
computer.)

- It will be helpful to see, on the iconbar, which version of the
developing application is loaded. If we arrange this, there will
then be no need to keep changing the value of appname$ at the
program start. We can use the name “Fuel” for all versions
(although the application directory names will still need to be
different of course).

All the changes necessary to achieve these points can be seen in
!Fuel4b - plus the presence of the new mini-application !DrWimpLib
in the same parent directory.

Listing reference: !Fuel4b is therefore the practical starting
point for our tutorial.

Subsequent tutorial changes will therefore build from !Fuel4b.
If you are following the tutorial ‘at the keyboard’ it is strongly
recommended that you keep the supplied listings disc ‘write
protected’ and work on copied versions. (In addition, the
tutorial !RunImage listings on the disc have all been locked
to reinforce this point. You can unlock the copies as required.)

4. Getting started with Dr Wimp

65

Variable names
In the following chapters we will be adding various routines to the
!RunImage and it is timely to mention some points about variable names.

Most importantly, if you look inside the DrWimp library you will see that
nearly all the variables used there are made LOCAL. However, some are
not - and these usually have names all in lower case and start with a “w”.
These steps are deliberate and intended to prevent clashes with variables
created by the programmer who is using Dr Wimp.

So the first rule is: don’t create new variables starting with a lower case
“w” - leave that letter for the DrWimp library.

There are a few special global variables used by Dr Wimp which do not follow
this normal pattern, mainly because they sometimes need to be used by the
programmer directly e.g. NULL% and UNUSED%. These are covered in the
Dr Wimp Manual - and NULL% is also covered later in this book.

Where this book creates other variables, it uses the policy of putting
variable names in lower case but starting each ‘word’ or ‘sub-word’ with a
capital letter e.g. Main%, IconBar%. The same policy is used in naming
the app-functions (see Chapter 4 also).

These housekeeping details have been much longer to describe than to
do but now they are out of the way, we can proceed to do something
more visibly useful!

4. Getting started with Dr Wimp

66

4. Getting started with Dr Wimp

67

5. The Iconbar icon and its menu

Iconbar sprite
Our next practical step moves beyond house-keeping. When we double-
click the application icon to start things up we want an icon to appear on
the iconbar, signifying in the usual RISCOS way that the application is
loaded and providing a user focus for getting access to the application’s
facilities.

With Dr Wimp, putting an icon on the iconbar is done very simply by
calling one of the available wimp-functions. The one we want is:

FNwimp_iconbar(sprite$,text$,maxlen%,pos%)

This function takes a named sprite, places it on the iconbar as an icon and
returns a handle. The sprite needs to exist in the application’s !Sprites
file (or be in the Wimp sprite pool already - see Appendix 3) and then is
identified simply by using its name in the first parameter sprite$.

If we want to put some text beneath the sprite, then that is the purpose of
the parameter text$. (Make sure it is a null string if no text is required.)
If we do want to use text we might also want to change it to longer text
during the program run. In that case, the third parameter, maxlen%, allows
us to specify the maximum length of text required.

If the fourth parameter pos% is 1 the sprite will appear on the right of the
iconbar - if it is 0 it will be to the left.

So, starting from !Fuel4b (or a copy of it, called !Fuel5a), update the
application directory name, sprites files and Lines 20 and 120 to ‘5a’.

5. The Iconbar icon and its menu

68

Then add the following line to the !RunImage, within
DEF PROCuser_initialise:

480 IconBar%=FNwimp_iconbar(“fuel”,“V ”
+Version$,0,1) :REM** Creates and
displays sprite on iconbar. **

This line also shows the practical effect of the housekeeping changes
made between !Fuel4a and !Fuel4b. We now have two sprites in our
!Sprites file: one whose name ending we have to change for each
version (to keep the different versions correctly displayed in the
application window) and one called fuel - which does not change its
name. It is the latter one we have put into the first parameter here i.e. this
sprite is always the iconbar icon.

The string manipulation used in the second parameter is to change the text
beneath the iconbar icon in sympathy with our version numbering - it puts
a “V” (with space) in front of the version number (from Line 120).

You may be surprised to see that the third parameter has been given the
value 0 when the string in the second parameter will certainly be longer
than zero. This is a small example of how Dr Wimp helps ‘behind-the-
scenes’. An automatic check is always made to ensure that the third
parameter is at least the same as the length of the actual string in the
second parameter. Thus, as in this case we will not want to change this
string during the program run, it is safe to use 0 in the third parameter.
Dr Wimp will sort it out.

Finally, the handle returned to IconBar% in this case is, in fact, the
window handle of the iconbar - which is always -2. This is used a little
later.

If you now save and run the updated application, you will see the sprite
duly installed on the iconbar, with “V 5a” written beneath it. It’s as easy as
that! (But you will still have to Quit via the Task Display, at the moment!)

To emphasize that any sprite already in the Wimp pool could also be
named in Line 480, the Tutorial in the package Manual suggests using
“!draw” instead. Try it to prove the point to yourself.

5. The Iconbar icon and its menu

69

Iconbar menu
Once we have the iconbar icon displayed, it is usual to offer a choice of
user activities via an iconbar menu. So the next task is to create and
display a menu.

Dr Wimp provides several ways to create menus (see Chapter 17) and at
the moment we will use the simplest - which is by using the wimp-
function:

FNwimp_createmenu(menu$,size%)

The parameter menu$ needs to be used in a special way, which is best
shown in the actual line we are going to use. Add this line, again within
DEF PROCuser_initialise:

620 IconBarMenu%=FNwimp_createmenu(“Fuel/Info/
Quit”,0)

As you can see, menu$ is constructed as a list of the actual menu items
you want to appear - each separated with a slash. Just note that the first
item in this string is the menu heading and item No.l in the menu list will
be the second item in the string i.e. “Info” here.

The second parameter sets the maximum number of items allowed in the
menu - in case you want to add more later - and 0 means just allow space
for the items listed. We will come back to this.

That is all we need to do to create a menu. The wimp-function returns the
menu handle. It doesn’t display the menu though - we want that to happen
when we press the <menu> button over the iconbar icon. To arrange this
takes us into our first use of the user-functions.

First use of a user-function
Whenever <menu> is pressed over one of the application’s active
windows, DrWimp calls FNuser_menu(window%,icon%) automatically
behind-the-scenes.

Moreover, it makes the call with the actual ‘live’ parameter values of the
window and icon handles over which <menu> was pressed.

5. The Iconbar icon and its menu

70

If, in response, the user-function returns a valid menu handle then that
menu is immediately displayed. Very simple but very powerful.

Initially, FNuser_menu(window%,icon%) is empty and returns 0 to any
call from the DrWimp library - which results in no action. We therefore
need to alter the contents of the user-function so that, when the passed
window/icon parameter values are the ones we want, it returns the
corresponding menu handle instead of 0.

It is much easier to show than describe. FNuser_menu is at Line 1590,
and it is amended as follows:

1590 DEF FNuser_menu(window%,icon%)
1600 REM** Responses to <menu> mouse clicks. **
1610
1620 ReturnHandle%=0
1630
1640 CASE window% OF
1650
1660 WHEN IconBar%
1670 ReturnHandle%=IconBarMenu% :REM**

Displays menu ‘IconBarMenu%’ when
menu button clicked over iconbar
icon. **

1680
1690 ENDCASE
1700
1710 =ReturnHandle%

Although this is very simple coding, we will nonetheless describe it in
detail because it is typical of how nearly all the user-functions work and
therefore important that it is fully understood early on.

Don’t forget, this user-function will be called (from somewhere within
the DrWimp library) every time the <menu> button is pressed over one
of the application’s active windows. When this happens, DrWimp
automatically substitutes the current window and icon handles (over
which <menu> was pressed) into the window% and icon% parameters
before it makes the call. So ‘live’ parameter values are being passed to
you, the programmer, to use as you wish.

5. The Iconbar icon and its menu

71

In this particular case, we are concerned solely with the iconbar icon and
the application has only one of these. Hence the passed icon handle
parameter is not important this time - the window handle is enough.

Thus, when the window handle is the iconbar, we want the menu handle
returned to be the one we created in the preceding section i.e.
IconBarMenu%. Otherwise we return 0.

In Line 1660 therefore, we could have used:

WHEN -2

but as the iconbar window handle was previously assigned to the variable
IconBar% (see earlier) it makes easier reading to use this instead.

What our CASE ... ENDCASE amendment says is “When the window is
the iconbar, the handle of the menu to display is IconBarMenu%”. That’s
all there is to it!

Now run the application again and confirm that the menu duly appears, as
shown below, in the normal place when you press <menu> over the
iconbar icon.

5. The Iconbar icon and its menu

72

If, instead or in addition, we wished to show a menu in response to a
<menu> click over a particular icon in one of the application’s ordinary
windows, then we would simply need to use/add other WHEN statements to
capture the appropriate window handle(s) and typically nest another
CASE ... WHEN ... ENDCASE construction within each to capture the
icon handle(s) required.

A more general structure might therefore be:

DEF FNuser_menu(window%,icon%)

ReturnHandle%=0

CASE window% OF

WHEN WindowHandle1%

CASE icon% OF

WHEN IconNumber1%

ReturnHandle%=MenuHandle1%

ENDCASE

WHEN WindowHandle2%

CASE icon% OF

WHEN IconNumber2%

ReturnHandle%=MenuHandle2%

ENDCASE

ENDCASE

=ReturnHandle%

Finally, it is of course possible that the user will press <menu> over a
window’s background, rather than over an icon. In this case,
FNuser_menu is called (by the DrWimp library) with an icon handle value
of -1.

5. The Iconbar icon and its menu

73

Menu selection
By now, it will not surprise you to learn that whenever you make a
selection from a displayed menu, DrWimp automatically makes a call to
another user-function, this time:

PROCuser_menuselection(menu%,item%,font$)

which is at Line 2610. Change this DEF PROC to become:

2610 DEF PROCuser_menuselection(menu%,item%,
font$)

2620 REM** Responses to menu selections. **
2630
2640 CASE menu% OF
2650
2660 WHEN IconBarMenu%
2670
2680 CASE item% OF
2690
2700 WHEN 2
2710 REM** “Quit” is menu item 2. **
2720
2730 PROCwimp_quit(0)
2940
2950 ENDCASE
2960
2970 ENDCASE
2980
3550 ENDPROC

(Note from the numbering gaps that quite a lot of lines will be added to this user-
function in due course.)

With the previous detailed explanation of DEF FNuser-menu, the
workings of DEF PROCuser_menuselection ought to be fairly self-
explanatory. This time our amendment says “When item number 2 (second
in the list, the top item being 1) is selected from the menu called
IconBarMenu%, carry out PROCwimp_quit(0).”

5. The Iconbar icon and its menu

74

We will look at PROCwimp_quit later but, for now, setting its parameter to
0 means that the application will quit from the desktop i.e. the usual way
to end a Wimp program.

OK, so now run the application again - and try it.

Listing reference: This is another useful milestone, so we will
save the application at this stage as !Fuel5a.

Note that we have ignored the third parameter (font$) of:

PROCuser_menuselection(menu%,item%,font$)

This will be covered later in Chapter 17 under ‘Font menus’ - but in the
above it will be a null string.

Take stock
As was explained, this chapter has deliberately covered a few fundamental
features of Dr Wimp in some detail, because the working of the user-
functions - albeit quite simple - is a little unusual i.e. they are called from
the DrWimp library and automatically passing ‘live’ parameter values to
you, the programmer.

Once the penny drops, the real strength of Dr Wimp is appreciated.

The chapter has also introduced the importance of identifying the right
wimp- and/or user-function and then using it (in a very simple manner).
This is typical of 90% of the hands-on work of using Dr Wimp. So it is
important to get browsing among the function list in the Dr Wimp Manual
(Section 3) or by using !Fnc’n’Pre (its on-screen equivalent) to get to
know what is available.

Because of the meaningful and consistent naming of the wimp- and user-
functions, the learning curve to acquire some fluency and confidence in
using the package is surprisingly short.

You need to be reasonably adept at Basic, but not expertly so - because all
the difficult stuff goes on behind the scenes.

5. The Iconbar icon and its menu

75

6. Adding windows and icons

To develop the tutorial application further, we need to create/design some
windows with icons and then start to use them in the program.

Designing windows/icons
In Chapter 2, we saw that the creation/design can be done directly from
within the program or by using window definition templates - and that,
generally speaking, the latter is far more convenient. Dr Wimp provides
facilities for both methods and, whichever approach is chosen, the
creation/design process is a step which is largely independent of the more
mechanical process of loading/displaying/managing the resulting design.

At this stage, we are going to use the template method and, whether using
Dr Wimp or not, window templates are created in a template editor which
prepares the window-plus-icons definition in a file format specified by
RISCOS in the PRM. Traditionally, the template file becomes one of the
‘application resources’ - see Appendix 3 - and is normally held in the
application directory.

There are several template editors available - all of them graphics editors -
and the output of any of them (for a given window) will be the same.
Thus, the one to use is a personal choice. But the Dr Wimp package
includes a very good one (!TemplEd, a PD utility by Dick Alstein) and
this book shows how it is used in Appendix 7 - specifically taking one of
our tutorial windows as its descriptive vehicle.

That Appendix is closely linked with Appendices 4 and 5 which look at
the important subject of window and icon ‘button types’ and icon
validation strings.

6. Adding windows and icons

76

So now is the time to divert to those appendices - because the following
words will assume that you already have a templates file in the same
directory as the !RunImage and that it contains, at least, the definition of
the following Info window - and that you understand the concepts of icon
and window button types, icon numbers and ‘indirected’ text.

These are vital topics: do not proceed further into this book without
taking them on board!

The Info window

As you can see, this window is typical of the information box that you see
when you move the mouse pointer to the right across the top item
(invariably called ‘Info’) of the iconbar menu of nearly every application.

Examining it in more detail - as it is the first window of our tutorial - it is
a small window with a title bar but no scroll bars, close icon, back icon,
size toggle etc. In total, there are eight icons holding text - all of button
type ‘Never’, because we need no interaction with the mouse for this
window.

There are four icons on the left (icon numbers 0-3, from top to bottom)
with only short, single words as their text. These are without a border or a

6. Adding windows and icons

77

background - so the effect is as if the text is written directly onto the
window. The text in these acts as labels for the other four icons (4-7),
which have 3D effect borders and contain the program information.

In this example, the text in the four label icons (0-3) is fixed text included
as part of the icon definition and cannot be changed by the program.
However, the main information icons (4-7) contain ‘indirected’ text and so
can be altered by the program.

The maximum length of the indirected text allowed in icons 4-7 is, in this
case, just sufficient to hold the items shown in the above screenshot i.e. 6,
28, 10 and 26 characters for icons 4-7 respectively - each one being one
more character than the visible text, to allow for the string terminator.
There is no reason why you cannot alter these values (in the template
editor) if you wish.

Similarly, provided that they are created as indirected text icons of
sufficient maximum length, there is no need to put any actual text in the
template. It has been done here solely to show the intended text formats at
the maximum lengths.

With this Info window in place within a file called “Templates” we can
now start to use it. What we want to do with this particular window is
fairly modest - just to display it from the iconbar menu.

Loading a window
The first thing we have to do with any window held as a template, is to
load it into our application. Provided this is done after
FNwimp_initialise and before PROCwimp_poll (and before you want
to display the window!) the precise location in the program is not too
critical. However, it makes sense to include it in PROCuser_initialise
and the following addition does this:

520 Info%=FNwimp_loadwindow(“<Fuel$Dir>.
Templates”,“Info”,0)

The first parameter of this wimp-function is the full path name string of
the template file in which the required window is stored, and the second is
the specific window definition name string.

6. Adding windows and icons

78

The third parameter tells the program where to find any sprites which may
be used in the window. To the DrWimp library, 0 actually means “use the
Wimp sprite pool” but as we are not using any sprites here, 0 is also a
convenient default value. If we were using our own sprites, we would
need to create a ‘sprite area’ - which Dr Wimp has facilities to do (see
Chapter 19) - and we would then put the address of the sprite area in this
third parameter.

The function returns a handle for the window and the meaningful name
Info% has been chosen in the above line to store this.

This simple wimp-function hides an awful lot of routine hassle behind the
scenes in the DrWimp library. Not only are the straightforward physical
window parameters loaded (e.g. size, colours etc.) but also any outline
fonts used in the template are correctly loaded in and ‘opened’ ready for
use (one ‘opening’ per font per size) and in a manner which will not
conflict with other template loadings or other separate uses of fonts in the
application. Similarly, all icons in the window template are correctly
loaded and identified to the Wimp. Font handling, in particular, can be
tricky to get the hang of, so Dr Wimp really does a good job in making it
painless.

Attaching a window to a menu
As is normal with Info windows, we want it to be displayed - in the same
way as a sub-menu is displayed - whenever a user presses <menu> over
the iconbar icon and then moves the pointer off to the right of the “Info”
item on the menu (menu item 1, the topmost item).

Again, this is painless with Dr Wimp as there is a wimp-function to do it.
It is:

PROCwimp_attachsubmenu(menu%,item%,submenu%)

which is almost self-explanatory.

This function attaches a sub-menu (or a window) to an already defined

6. Adding windows and icons

79

menu. The first and second parameters are, respectively, the handle of the
menu and the specific menu item to which the attachment is to be made -
the top menu item is 1. The third parameter is the handle of the sub-menu
(or window) which is to be attached.

The required line in our case is therefore:

760 PROCwimp_attachsubmenu(IconBarMenu%,1,Info%)

That is, after the menu IconBarMenu% has been created.

If you now save !RunImage and run it you will find that the top menu
item now has the usual right-pointing arrowhead and the window will
appear as required - albeit still with the text from the template.

Putting/changing text in icons
Yet again, a simple wimp-function is in the Dr Wimp arsenal to change the
text in any indirected icon. The wimp-function is:

PROCwimp_puticontext(window%,icon%,text$)

This really is self-explanatory!

(If you are new to Wimp programming, now is the time to note that
icons can only hold text or sprites or both. They do not hold numbers:
all numbers need to be converted to string form first before being
displayed in an icon.)

So, in our case, we need to call it four times - once for each information
line (i.e. icon) in the Info window, whose handle is Info%. You will
remember that the relevant icon numbers are 4-7 from top to bottom,

There are several ways we could make these four calls. A popular way, for
the Info window, is to put the required text into a DATA line and READ it

6. Adding windows and icons

80

for each icon using a loop. This method, you will recall, was used in
!TestAppl and !TestApp3.

This time, however, it will serve the tutorial purposes better simply to call
the wimp-function four times directly. The lines to add are therefore:

800 PROCwimp_puticontext(Info%,4,“!Fuel”)
810 PROCwimp_puticontext(Info%,5,“To log fuel

consumption“)
820 PROCwimp_puticontext(Info%,6,”Ray Favre“)
830 PROCwimp_puticontext(Info%,7,”Version

“+Version$+” (“+VersionDate$+”)“)

The fourth line automatically copes with our version numbering changes.
You can make the text changes here to suit your own wishes, of course.

The only thing you need to watch is the indirected text length limits built
into these icons in the window template. If you exceed them, some strange
effects may happen - typically the desktop starts to revert to ‘system font’
if you have it set to an outline font.

Save and run the program again to check that the new text is displayed
correctly.

PROCwimp_puticontext has some other important points which need to
be taken on board:

 - In the use we have just made of it, the corresponding window was
not open when the call occurred. It could not be because the
window happens to be linked to a menu. The point to note is that
this is perfectly OK. After it has been loaded/created, the text of
an icon can be changed at any time, provided the icon text is
‘indirected’ of course. The new text will then show when the
window is next opened.

- The corollary is that, if the corresponding window is open when
the call is made, the text in the icon will be changed immediately
in the display. This is another example of Dr Wimp shielding you
from all the complication.

6. Adding windows and icons

81

- If an icon is indirected and contains a sprite instead of text (e.g.
like the draggable file icon in the standard Save window) then
PROCwimp_puticontext can be used to change the sprite, in
exactly the same way as for changing text. In this case, the sprite
name - in string form - is put in the third parameter e.g. “file_ffb”
to change the icon sprite to the standard Basic file icon.

Listing reference: This is another useful milestone, so we will
save the application at this stage as !Fuel6a.

6. Adding windows and icons

82

6. Adding windows and icons

83

7. More windows

Although nearly all applications have one, the Info window is not a typical
window. It is generally only used as an information display and does not
itself become involved with other user interactions. So now is the time to
start moving into the main uses of windows.

The windows needed
Our tutorial will need three other windows to carry out the tasks we
outlined in Chapter 5:

- one to create separate fuel records for each vehicle;

- one to permit each vehicle fuel consumption to be updated

- one on which to draw a selected vehicle’s fuel consumption graph.

We will call these windows NewCar, FuelUpdate and FuelGraph
respectively and we will introduce them in this same order.

This chapter will deal with the NewCar window.

7. More windows

84

The NewCar window
This window has been added to the Templates file in !Fuel7a and
looks like this:

Again, this was designed in !TemplEd - see Appendix 7. Its main
characteristics are:

- The window work area button type is ‘Never’.

- There are ten icons (0-9), which carry all the text (indirected) and
the decorative fuel sprite.

- Outline fonts are specified for the text in all text icons, using the
Fcommand in the validation strings (again, see Appendix 7).
(Outline fonts supplied with all RISC OS computers are used.)

- The three writable icons (0, 1 and 2) use the A-command in their
validation string to restrict the allowable user-entry characters
(see later also). Their button type is ‘Writable’, of course, and the
pointer changes to a thin blue cursor as it moves onto them (via
the P-command in the validation string).

7. More windows

85

- The Clear all and Create fi1e icons are of button type
‘Menu’, which selects the icon (highlights it) as the pointer
moves onto them and responds to mouse-clicks.

- Background and foreground colours have also been used to
highlight action icons more prominently (icons 0, 1, 2, 6, 7 and
8) - again using the F-command.

- It is essential to remove any K-command validation string from the
three writable icons (icons 0, 1 and 2), otherwise the caret
movement may not work as later arranged.

- It is helpful, for programming, to number the writable icons 0, 1
and 2, as per the template and for the other three coloured text
icons to be numbered consecutively (6, 7 and 8 here).

- If you play with the template, make sure none of the icons is
selected in the template display before it is re-saved otherwise it
will not look right when first opened by the application.

Intended operation
This window will be opened from the iconbar menu and its three writable
icons will start off empty with the caret in the top one. The other three
coloured text icons will start off disabled i.e. they will be ‘greyed out’ and
give no response.

The vehicle details are to be entered by the user into the three writable
icons using keyboard entry. The <return> key or <up/down> keys will
be used to cycle the caret among the three icons at will whilst they remain
empty. However, once an entry is made in any of the three icons, a
validation process on that entry will commence as soon as <return> or
<up/down> is pressed and the caret will not be allowed to leave that icon
until a validated entry is completed (or the user once again empties it).

Only when all three writable icons hold validated entries will the three
other coloured icons be enabled, allowing the user to confirm that a new
file should be opened - or, alternatively, that all the icon entries are to be
cleared. (Individual entries will still be able to be amended during this

7. More windows

86

stage.) Once a new file has been opened, all window entries will be
cleared and the display will revert to its starting state.

Displaying the window
We need start the action by displaying the new window on the screen. This
is straightforward once we have it saved in the Templates file. First, the
window needs to be loaded, exactly as with the Info window earlier and
this is best done in the very next line after that, thus:

530 NewCar%=FNwimp_loadwindow(“<Fuel$Dir>.
Templates”,“NewCar”,0)

Secondly, because we are going to activate this window from the iconbar
menu, we now need to revisit that menu and make a modification to our
existing program.

So, change Line 620 to:

620 IconBarMenu%=FNwimp_createmenu(“Fuel/Info/New
car/Quit”,0)

which just adds an extra menu item “New car”. However, in doing so, it
changes the menu position of ‘Quit’ from item 2 to item 3, so we also need
to change our existing menu-selection code to reflect this. Therefore,
change Line 2700 from WHEN 2 to WHEN 3.

So, our new menu item 2 is “New car” and when this is selected we want
the new window to open. This is achieved by adding a new WHEN 2
sequence to PROCuser_menuselection, using yet another wimp-
function, whose general form is:

PROCwimp_openwindow(window%,centre%,stack%)

where window% is the handle of the window to be opened and centre% is
0, 1 or 2 and determines where the window is placed on the screen. 0
means where it was last opened (or as in the template definition if the

7. More windows

87

window has not yet been opened); 1 means centred on the screen and 2
means centred on the pointer.

stack% is a handle of another window - the one to open the new window
behind. Alternatively, -1 is used to open the new window on top of all the
rest, or -2 to open it at the bottom, or -3 for the current stack position.

Therefore, the new sequence to be added is:

2770 WHEN 2
2850 PROCwimp_openwindow(NewCar%,1,-1)

(You may think that things are now out of order in the CASE ... ENDCASE
construction, but all will become clear later.)

You should now run the new program to check that the “New car” window
opens as expected, but there is a lot more to do before it can be used.

Enabling/disabling icons
From using other applications you will be familiar with the fact that icons
(and menu items) are often ‘greyed out’ to prevent their use at particular
stages in the application and/or if a feature is not available in the version
you are using. Dr Wimp provides a wimp-function for this:

PROCwimp_iconenable(window%,icon%,state%)

The first two parameters are self-explanatory. The third parameter,
state%, is set to 0 to disable the icon or 1 to enable it.

We said earlier that the starting state of our new window would have three
of the coloured text icons disabled - so we need to effect this as soon as

7. More windows

88

the window is opened. Immediately after the above
PROCwimp_openwindow line (i.e. still in the WHEN 2 sequence).

We could simply add:

PROCwimp_iconenable(NewCar%,6,0)

PROCwimp_iconenable(NewCar%,7,0)

PROCwimp_iconenable(NewCar%,8,0)

However, we shall soon want to do a few other things at this point also, so
it makes structural sense to put all such actions into a new and separate
procedure - our first app-function - as follows:

7600 DEF PROCapp_ClearUserIcons(Window%)
7650 CASE Window% OF
7670 WHEN NewCar%
7680 FOR Icon%=0 TO 2
7700 PROCwimp_iconenable(Window%,(Icon%+6),0)
7730 NEXT
7880 ENDCASE
7940 ENDPROC

and we call this new app-function with:

2870 PROCapp_ClearUserIcons(NewCar%)

Again, you may feel that the coding is somewhat convoluted to produce
the icon numbers 6, 7 and 8, but there is a reason which will become clear.

Now when you run the program you will see the effect - the window opens
with the three lower coloured icons ‘greyed out’.

7. More windows

89

Caret placement
We also said that the caret would start off in the top writable icon, which is
icon 0, and yet again a wimp-function is provided. Add the next line:

2880 PROCwimp_putcaret(NewCar%,0)

which says “Put the caret into icon 0 of the NewCar% window”.

In operation, this action will also give the window the ‘input focus’ -
which will be shown by the window’s title bar becoming pale yellow (see
later, also).

Don’t forget that you can only use this wimp-function if the window is open.

As we said under ‘Intended operation’ above, we are also going to make
the caret cycle round the writable icons in order to help the user ensure
that all three writable icons get valid entries before further action can take
place.

Please note that different RISCOS versions have handled caret
movement among writable icons in different ways, with later versions
being easier for the programmer. But our tutorial will adopt a method
which should work identically for all RISCOS versions.

Key presses
With the window now in its initial state, the user is required to use the
keyboard to make data entries. The <return> and <up/down> keys are
used to signify the end of an entry and/or to move the caret and will also
trigger our specific entry-validation and caret control processes.

All Wimp programs need a routine to handle user keypresses and
Dr Wimp makes does this via the user-function FNuser_keypress.

This user-function is called automatically from within DrWimp every time
a key is pressed - if our window has the ‘input focus’.

7. More windows

90

The general form is:

DEF FNuser_keypress(window%,icon%,key%)

=0

and the live values of the relevant window and icon handles and the ASCII
code of the keypress are passed to you in the three parameters.

If we don’t need to use the keyboard at all - or only want to use it to fill a
writable icon - we simply leave this function in its default state, which
means it is ‘empty’ and returns 0. However, if we want to specify some
other action to be taken on a keypress (e.g. like some specific caret
movement or extra validation) then we define that action in the user-
function and arrange for it to return 1 when the appropriate keypress
occurs.

In our case, we want to use the <return> key (ASCII 13) and the
<up/down> keys (ASCII &18E and &18F) to initiate a special validation
check and to control the caret movement in a particular way.

Therefore, the following generalised sequence is appropriate:

DEF FNuser_keypress(window%,icon%,key%)
used%=0 :REM** Needs to return 0 if keypress not used.
CASE window% OF

WHEN NewCar%
CASE icon% OF

WHEN 0,1,2
CASE key% OF

WHEN 13,&18E,&18F
used%=1 :REM** Needs to return 1 if keypress
is used for some action. **

PROCapp_Validate:REM** Validate current
entry.

PROCapp_MoveCaret:REM** Cycles caret.
PROCapp_CheckAllEntries :REM** Checks if all
three entries validated. **

ENDCASE
ENDCASE

ENDCASE
=used%

7. More windows

91

Note that this routine responds only to the <return/up/down> keys -
anything else is either entered into the icon (if it passes the icon’s
validation string criteria) or is ignored.

Using this structure for guidance, a specific routine is entered at Line 2180
for your examination. You will note that it is structured to be used by more
than the NewCar% window and we will return to this later.

(Chapter 26, Appendix 5 and the Dr Wimp manual contain more detail
about using keypresses and caret control among writable icons.)

Also needed is the coding for the new app-functions represented above by
PROCapp-Validate, PROCapp_MoveCaret and
PROCapp_CheckAllEntries - which will carry out the keyboard entry
validations.

For these there is first a need to set up some flags and arrays, which are
appropriate to PROCuser_initialise and more neatly done by calling
a new app-function from within it. This new app-function is
PROCapp_FuelInit.

DEF PROCapp_FuelInit is started at Line 4590 and the single call to it
is placed at Line 450. It would risk confusion to list the complete
DEF PROC here, so we will mention the various important lines as we
need them. The first are:

4640 DIM Valid%(2)
4650 DIM Valid$(4)

The elements in array Valid%() hold either TRUE or FALSE and are flags
indicating whether or not the user entries into icons 0, 1 and 2 have been
validated. They are initially set to FALSE by other lines in the DEF PROC.

Valid$() holds the validated strings from each user-entry icon. This
array has more elements than Valid%() because we are also going to use
it for the FuelUpdate window which has extra icon strings to hold. The
elements are ‘sized’ to 10 characters and then set as null strings, by other
lines in the DEF PROC.

Both these arrays will also need to be reset to their starting states after
successful creation of a new vehicle file - ready for another possible new
vehicle. DEF PROCapp_ClearUserIcons is changed to do this.

7. More windows

92

With these arrays in place we can start to construct a validation sequence.

User-input validation
Validation of user keyboard entries is an important task for nearly all
programs.

With Wimp programs, validation of user entries in writable icons is made
very much simpler by the very comprehensive ‘first line of defence’
facilities offered via the icon’s ‘validation string’ (see Appendix 5). This
enables us to restrict at entry which characters can be accepted from the
keyboard and also the maximum number of characters allowed - for each
icon individually.

This is a considerable help but, even so, our application will still need a
fair amount to be done on the ‘second line of defence’.

As this book is about Wimp programming and Dr Wimp in particular, we
will not be going through the specific validation processes needed for our
tutorial application in detail. However, using !TemplEd you will be able
to see the validation strings used for each icon via the Templates file on
the disc.

Similarly, the (fairly extensive) programming of the ‘second line defence’
can be seen in the !RunImage listing for !Fuel7a which is well-
commented. Several new app-functions have been added - in accordance
with those indicated a little earlier.

Nonetheless, it is sensible to give a brief overview of the validation needs
here as they are quite typical of what might be needed in any program:

Vehicle Registration Number (VRN) (icon 0 of NewCar
window). We can’t do much validation here, because the valid
variations are considerable. VRNs usually comprise small groups
of capital letters and/or the numbers 0-9, separated by single
spaces - so we can usefully allow only these characters with the
validation string (so don’t forget that <shift> will be needed to
enter letters).

Beyond that, we will eliminate any leading and trailing spaces
and also any occurrences of more than one space consecutively.

7. More windows

93

Further, we will set an arbitrary rule that the total length of the
VRN must not be less than 6 letter/number/space characters in
total - but this is easily changed if you own “HRH 1”!

Date (icon 1). We may well later want to extract numerical data
from the date, so there are many advantages if we fix the date
text format rigidly at the user-entry stage. We will use the form
dd/mm/yyyy - but will allow the user to enter single numbers for
day and month and will automatically add leading zeros to keep
the format constant.

We can therefore use the validation string to restrict the date
entries to the digits 0-9 and the “/” symbol, but we need to check
for at least two “/” characters, correctly disposed. For the year,
we will limit it to the range 2000-2050 and, of course,
appropriate date and month range limits.

(All this takes a lot of program lines, as you can see from the
listing starting at Line 10430.)

Mileage (icon 2). Here we are talking about the odometer reading,
so we can easily restrict ourselves to integer numbers with no
more than six digits. It is worth noting that 0 can be a valid entry
and needs to be distinguished from an empty (null string) icon.

Don’t forget (see earlier in this chapter) - the aim is not to let the user
leave an input icon (i.e. leave PROCapp_Validate) until a valid entry (or
an empty icon) exists. So, each time <return/up/down> is pressed, the
program needs to evaluate the string currently in the icon. If it is not valid,
the user needs to be warned and told why and the caret needs to be put
back into that same icon - without deleting the invalid entry.

The programming therefore makes copious use of calls to
PROCwimp_error to provide helpful explanations of why the entry is not
valid e.g. “Too many days for the month” etc.

7. More windows

94

Some specific wimp-programming points
Although we will not be looking into PROCapp_Validate in detail, there
are a few wimp-programming items that need comment.

Reading text from an icon
The routines include the use of the wimp-function:

FNwimp_geticontext(window%,icon%)

This is a FN and it returns the text from the specified icon - again, it is that
simple.

Like its counterpart PROCwimp_puticontext, an icon’s text can be read
at any time after it has been loaded/created - but in the reading case it does
not have to be ‘indirected’ text.

As mentioned earlier, remember that all ‘numbers’ read from an icon will
actually be text strings and hence conversion between the two will often
be needed e.g. using VAL and STR$.

Line 9450 shows a typical call to read the text from an icon.

Moving the caret
After a valid entry has been achieved in any one of the three icons, we
want the caret to move in a logical way to the next icon and to cycle
around the three potentially available. As we said earlier, the method
adopted here should work for all RISCOS versions.

PROCapp_MoveCaret at Line 7980 does this and it is straightforward -
although it has been generalised to allow it to be used in more than one
window and for any three consecutively-numbered icons. This routine
may not work correctly for all RISCOS versions if any of the writable
icons have a K-command in their validation string (see Appendix 5). so
please ensure that none is present.

It should be noted that the corresponding window needs to be open before
a PROCwimp_putcaret call will work - as, unlike text, a caret cannot be
put into an icon unless the window has the input focus.

7. More windows

95

Enabling icons
As seen in the earlier outline structure of DEF FNuser_keypress, after
every <return/up/down> keypress we need to check to see whether all
three user input icon entries are yet validated. If they are, then the user can
be allowed to proceed to creating a new vehicle file - and we duly signal
this to him/her by enabling icons 6, 7 and 8 to present the corresponding
options.

PROCappCheckAllEntries at Line 8350 does the necessary actions.
Note that it needs to ‘enable’ and ‘disable’ the icons in an
IF THEN ELSE ENDIF construction. This is a very common type of
need.

Checking the changes
If you run the application as it now stands, and open the NewCar window
from the iconbar menu, you will be able to make entries into the three
input icons to try out the validation processes in each one.

When you have a validated entry in all three user-entry icons the
Create file and Clear all icons will become enabled, inviting the
user to click on one of them to take the next step.

At the moment, nothing will happen if you click on them and we will
address that in the next chapter.

Listing reference: We have added quite a lot of lines in this
chapter and reached another useful milestone So we will save
the application at this stage as !Fuel7a.

You will probably need to spend some time on this particular
listing before continuing, because we have not given detailed
descriptions here.

7. More windows

96

7. More windows

97

8. Mouse clicks

(This chapter concerns mouse-clicks over windows and icons only.
Mouse-clicks over menu items have already been introduced under
menu selection in Chapter 5)

The principles
Mouse clicks over windows and icons are, of course, a major part of the
user interactions in Wimp programs and, before continuing with our
tutorial program, it may be helpful to explain how Dr Wimp handles them
and how this differs from the fundamental Wimp treatment.

(However, this explanation is not critical to an understanding of
Dr Wimp and you can skip straight to ‘The practice’ - on the next page
- if you prefer!)

The Wimp itself treats clicks with the <menu> button in a different way to
<select>/<adjust> clicks. As Appendix 4 indicates, the window/icon
button type is used to define the Wimp’s precise response (which can be
‘no response’) to <select>/<adjust> actions whereas the Wimp always
responds to <menu> clicks.

Dr Wimp takes a similar but simpler approach. Firstly, it handles <menu>
button presses just like the Wimp and we have already seen how this is
done via DEF FNuser_menu in Chapter 5. This was very simple and
needs no more explanation here.

However, for <select> or <adjust> actions, it takes the view that, in
the vast majority of cases (whether clicks on windows or icons), the key
factor is which button has taken the defined mouse-click action, rather
than what, precisely, that action was.

8. Mouse clicks

98

Thus, if an icon is of button type ‘Double-click’ the Wimp will ensure that
there will only be a response from it if <select> or <adjust> is double-
clicked over it. Similarly, an icon of button type ‘Click’ will give a
response to a single click from <select> or <adjust>.

Dr Wimp provides a single user-function to handle both these cases -
telling the programmer which button took the action but not distinguishing
between the single- or double-click actions.

It would be a similar result if button type ‘Release’ was used, A response
would only occur on button release, but Dr Wimp’s single user-function
would be used just the same.

In the vast majority of applications this is not a limitation. In fact, it is
usually a welcome simplification.

When it comes to drag actions, Dr Wimp provides facilities for saving or
loading file data (see Chapter 18) - which are the most likely uses of
dragging - but does not offer a general dragging facility.

The practice
As we shall see, the practical restrictions are very few indeed and the
implementation is extremely easy.

The user-functions provided is:

DEF PROCuser_mouseclick(window%,icon%,button%,
workx%,worky%)

This is called by the DrWimp library whenever a <select> or <adjust>
mouse click is made and it is up to the programmer to fill the DEF PROC
as required, using the ‘live’ values passed in the parameters.

The parameter button% holds 1 if <adjust> was pressed and 4 if
<select> was pressed. These may seem odd values but they are those the
Wimp uses and they make sense in binary if you visualise the three
buttons and represent each by a single bit in a three-bit number: 100 for
the left button and 001 for the right - get it? Yes, the Wimp does produce 2 for
the middle button <menu>, but this is ‘tied off’ in PROCuser_mouseclick and
activates PROCuser_menu instead.

8. Mouse clicks

99

The last two parameters, workx% and worky%, give the mouse pointer
position when the click was made - relative to the top left corner of the
window. These values can therefore be used by the programmer, if
required, and they are probably of most use when the window work area
button type is not zero, rather than for icons.

As has been stated in an earlier chapter, if the pointer is not over an icon
when the button action occurs, the icon number in the second parameter
will be -1.

Back to the tutorial application …
To see how easy it is in practice, in our tutorial application we only need
to add a typical and simple mouse-click routine, as follows:

1070 DEF PROCuser_mouseclick(window%,icon%,
button%,workx%,worky%)

1100 CASE window% OF
1120 WHEN NewCar%
1140 CASE icon% OF
1160 WHEN 8 :REM** ‘Create File’ icon. **
1170 PROCapp_CreateNewFile
1180
1190 WHEN 7 :REM** ‘Clear All’ icon. **
1200 PROCapp_ClearUserIcons(window%)
1210 PROCwimp_putcaret(NewCar%,0) :REM**

Put caret in top user-entry icon.
**

1220 ENDCASE
1530 ENDCASE
1550 ENDPROC

That is, if icon 8 is clicked a new car file is created and, if icon 7 is
clicked, all the icons are cleared of text - and for the latter, we can re-use
PROCapp_ClearUserIcons.

That is all there is to handling mouse-clicks.

The routine would have been identical if icons 7 and 8 had been, say, of
button type ‘Double-click’ or ‘Release’. The only thing that would be
different is that there would be no response from the icon unless a double-
click had occurred, or when the button release occurred, respectively.

8. Mouse clicks

100

We now need to create DEF PROCapp_CreateNewFile and the first task
is to make some enabling additions to PROCapp_FuelInit:

4980 SourceDir$=“<Fuel$Dir>.Vehicles”

4990 OSCLI “CDir ”+SourceDir$

5010 FileHeader%=32

5020 RecordLength%=48

5040 NewCarWindowOpen%=FALSE

Lines 4980 and 4990 ensure that a known directory exists to hold the
vehicle file records - which, for good reasons, we are going to save
directly without using a ‘Save box’. The use of the star command CDir is
such that it only creates the directory if one does not already exist - so
there is no difficulty in using it every time the program is started.

Lines 5010 and 5020 are housekeeping tasks to keep the vehicle files in
the same format: each will have a small header and each record will be of
a fixed length. (These features are not essential and have been chosen merely for
simplicity.)

Line 5040 is a flag to keep track, during the program run, of whether the
NewCar window is open or closed. Similar flags will be created for the
other windows in due course.

PROCuser_openwindow and PROCuser_closewindow are used to
toggle these flags between TRUE and FALSE. The former is called from the
DrWimp library just after a window has been opened - passing the window
handle, the screen coordinates of the top left corner of the window (in OS
units) and the window stack position. The latter does the same thing just
after a window has been closed. The necessary additional lines are shown
in the !Fuel8a listing.

8. Mouse clicks

101

Creating the file
PROCapp_CreateNewFile is fairly straightforward. Firstly, because
there is no limit to the craftiness of users, it is necessary to run a quick
check before creating a new file to ensure that the user hasn’t altered the
validated entries after the Create file icon has been enabled but before
it has been clicked.

So, DEF FNapp_DoubleCheck(Window%) at Line 7120 does this and
raps the user’s knuckles if this effrontery occurs. All the Valid%() array
elements are then put to FALSE - but the icon entries are not deleted
though. This explains the need for the array Valid%() - the validated
entries are stored there and the current contents of each user-entry icon are
compared with their corresponding array element as the double-check.
You will note that, as with some other cases, this DEF FN has been
prepared for later use in other windows.

If a change in the icon text is detected, the FN itself returns FALSE and
PROCapp_CreateNewFile exits (at Line 5510) before doing anything
else.

Next, PROCapp_CreateNewFile decides what to call the new file.
Anticipating a little ahead, we want to be able to handle more than one
vehicle, so all vehicle files will be named sequentially as Car1, Car2 etc.
The routine starting at Line 5610 tries to OPENIN each existing “Carx”
file in turn and stops when the channel number is 0 i.e. when no such file
exists. The first one that doesn’t exist is hence the name of the new one,
the next in the sequence.

This new file is then OPENOUT and the items from user-entries in the
NewCar window are put into the start of the file as a header and the header
is padded out to the value FileHeader% now defined in
PROCapp_FuelInit - and the file is closed. When we later add fuel
consumption data to the file it will start after this header.

Listing reference: This is another useful milestone, so we will
save the application at this stage as !Fuel8a.

This chapter has only introduced a few new user-functions but has
actually covered the basics of the most frequently used of all the user
interaction, namely mouse-clicks - and how simple Dr Wimp makes it.

8. Mouse clicks

102

8. Mouse clicks

103

9. Dynamic menus

Having created a new car file, we need to give the user access to it for
adding fuel data. This is best done by putting the vehicle’s VRN into the
iconbar menu and it would be sensible to allow for more than one vehicle
on file. Thus we have a need for a ‘dynamic’ iconbar menu i.e. its size and
content will be determined by how many vehicle files are held at the time
the menu is displayed.

Dr Wimp has several wimp-functions to help us effect this in different
ways and Chapter 17 is devoted to menus in more detail. However, for
now, it is sufficient to note that there are wimp-functions to modify a
single item on an existing menu. For example:

PROCwimp_putmenuitem(menu%,item%,item$)
PROCwimp_removemenuitem(menu%,item%)
PROCwimpputmenutitle(menu%,title$)
PROCwimpmenutick(menu%,item%,state%)
etc.

And there are others to recreate an existing menu entirely:

PROCwimp_recreatemenu(menu%,menu$)
PROCwimp_recreatemenuarray(menu%,array$())
PROCwimp_recreatemessagemenu(menu%,

messagefilehandle%,token$,title$)

There is also the user-function:

PROCuser_overmenuarrow(RETURN nextsubmenu%,
parentmenuitem%,x%,y%)

which allows us to alter a sub-menu just before it is opened.

9. Dynamic menus

104

At this stage, to demonstrate dynamic menus in our tutorial application,
we will only be using:

FNwimp_createmenu(menu$,size%)
PROCwimp_putmenuitem(menu%,item%,item$)

and we have already used the first of these in Chapter 5.

The programming sequence we will adopt is:

On program start, count number of existing
vehicles on file and extract their
VRNs into an array.

Create iconbar menu using ‘slash separated’ list.

If extra vehicles are created during program run,
use PROCwimp_putmenuitem to add them
to the menu.

To effect this we need, firstly, another visit to PROCapp_FuelInit and to
take a decision on the maximum number of vehicles we are going to allow.
In this tutorial a maximum of 6 vehicles has been chosen, but is easily
changed:

4820 MaxCars%=6

An array to hold the VRNs is then created, using this chosen maximum
number of vehicles:

4860 DIM CarReg$(MaxCars%)

and then the elements of this array are sized immediately after.

9. Dynamic menus

105

The existing iconbar menu creation at Line 620 then needs to be changed:

620 IconBarMenu%=FNwimp_createmenu(“Fuel/Info/New
car/Quit”,MaxCars%+3)

That is, the initially-created menu items are exactly as before but the
second parameter is altered to make the maximum allowable menu size
sufficient to take the maximum number of vehicles to be allowed plus the
three non-varying menu items in the ‘slash separated’ list (i.e not including
the menu title).

With these additions in place we can construct a new app-function to
count the cars on file at program start up.

FNcountAndGetCarRegs is defined at Line 5210 and called at Line 640
and needs little explanation. Remember from the previous chapter that the
vehicle files are named and numbered in the sequence Car1, Car2, etc.
The extracted VRNs are placed in the new array using identical element
numbering and the overall number of vehicles is returned to the new
global variable Cars%. (The UNTIL statement at Line 5360 guards against
there being more vehicles on file than is set by MaxCars% - in case you ‘play’!)

A FOR ... NEXT loop (at Lines 680-720) then calls the wimp-function
PROCwimp_putmenuitem the required number of times to add each VRN
as a new menu item.

There are three parameters to this wimp-function: namely menu%, item%
and item$. The first is self-explanatory. The second and third specify
where the new menu item is to be placed in the menu list (1 at top,
remember) and the required additional item string itself. Any existing
items at and below this position will be shuffled down. By calling the
VRN array elements in the reverse order (Line 630) the routine places the
most-recently-added VRN in the lowest position on the menu - just above
‘Quit’.

There is one more consequential thing to do. We need to change
PROCuser_menuselection to allow for the fact that ‘Quit’ may now not
be item 3 on the menu list.

9. Dynamic menus

106

There are several ways of coping with this, but as ‘Quit’ is always the last
item and as Dr Wimp offers the wimp-function
FNwimp_menusize(menu%), which returns the number of existing menu
items on the menu, we can simply use:

2700 WHEN FNwimp_menusize(barmenu%)

instead of the previous:

2700 WHEN 3

Adding more vehicles
This takes care of vehicles already on file when the program is started, but
what about any new ones created after start-up? These are easily coped
with by adding a few lines at the end of our existing app-function
PROCcreateNewFile.

Starting at Line 5900 the newly-created VRN is put into the correct
element of CarReg$() and PROCwimp_putmenuitem is then called to
add the new VRN at the bottom of the VRN list - again, just above ‘Quit’.
After this (at Line 5950) Cars% is incremented by 1

The only thing now left is to ensure that the user does not exceed our
newly set maximum number of vehicles on file. It will be more user-
friendly to stop the user from using the NewCar window once the limit has
been reached, rather than tell him/her the bad news when Create File
is selected after he/she has added all the details into the the window!

Therefore, the way chosen is to put an error trap at Lines 2800-2830 i.e.
before PROCwimp_openwindow(NewCar%,1,-1) in the WHEN 2 case in
DEF PROCusermenuselection. Further, the NewCar window is closed
deliberately (at Lines 6000-6020) after creation of a new vehicle file if this
has taken the total number of vehicles to the maximum.

The result is that when the maximum number of vehicles is on file, the
user is forced to use the iconbar menu in order to (try to) get to the
NewCar window. The new error trap will then be duly triggered to give a
warning message and prevent that.

9. Dynamic menus

107

Pause to reflect
It is worth pausing at this point to see what has been done. You will now
be able to create up to six vehicle records via the NewCar window, but no
more. As you create them, their VRNs will be added to the iconbar menu.
At this stage, nothing happens if you select one of these vehicles from the
menu, but the other three permanent menu items can be used to give
results as before.

Listing reference: Once again, we have come a fair way in this
chapter and it is another useful milestone. So we will save the
application at this stage as !Fuel9a.

9. Dynamic menus

108

9. Dynamic menus

109

10. Yet more windows and menus

We now need a means of logging the fuel consumption of any filed
vehicle i.e. we need a window which will allow the user to record vehicle
mileage readings and fuel quantity bought after each visit to the petrol
station.

The window itself is straightforward but we need to look ahead a little
before starting to implement it.

We have up to six vehicles on the iconbar menu and, eventually, when we
select one of them we will wish to have the choice of either:

- updating its fuel record, or

- displaying the graph of that record.

So, a means of making this choice is needed and a convenient way to do it
will be to present these two choices by attaching a simple, identical, two-
item sub-menu to each vehicle item on the main iconbar menu. We
therefore need to effect the necessary sub-menu construction before going
further.

More sub-menus
It would look better if the sub-menu which appears after ‘sliding right’
over the VRN of our choice had this same VRN as its title.

We can achieve this in several ways - possibly the most elegant being to
use PROCuser_overmenuarrow (see Chapter 17). We could then use a
single sub-menu and change its title dynamically.

10. Yet more windows and menus

110

However, our method in this tutorial will be to create a separate sub-menu
for each VRN.

We do this simply in five lines.

Firstly, a new array is created at Line 4920, to hold the sub-menu handles.
This array is called IconBarSubMenu%(). At the start of the program
(Lines 700 and 710) - after the VRNs are read in turn from the array
CarReg$() - a sub-menu is created for each, putting the sub-menu handle
into the new array. Each sub-menu is then attached to its corresponding
main menu item i.e. to its VRN. If a new car is added after the start of the
program, similar action occurs in Lines 5920 and 5930.

Finally, at Line 2920, an OTHERWISE statement with nothing in it is added
to PROCuser_menuselection to ensure that no action takes place if the
user presses <select> over any of the main iconbar menu items which
have a ‘slide right’ arrow.

If you add these few lines to a copy of !Fuel9 a you can confirm that all
is well so far. The on-screen result is shown here:

Sub-menu title same
as main menu item

10. Yet more windows and menus

111

FuelUpdate window
The way is now open to add a window to allow a selected vehicle to have
its fuel consumption recorded in its vehicle file. We will call this the
FuelUpdate window and it will be opened whenever the ‘Update fuel’
item is chosen on any one of the newly-created iconbar sub-menus,
reached by ‘sliding right’ across a VRN.

We need not introduce the composition of this window in the same detail
as was done for the NewCar window, because there are many similarities
to it. If required, the template should be viewed in an editor to examine the
button types, validation strings, etc.

The screenshot below shows this new window as it will typically appear
during general use, ready to add the latest fuel consumption update to a
vehicle file which has been in existence for some time. (In this case, the
VRN is “P123 ARC” and there have already been 11 fuel entries. The last fuel
entry was made at a mileage of 4051 on 7th April 1998 and the average m.p.g. to
that date was 35.82)

10. Yet more windows and menus

112

Examining this window shows that the user is required to note the car
odometer (mileage!) reading and date each time the petrol station is visited
- as well has the amount of fuel (in litres) put in.

From a programming viewpoint, we will therefore need routines to:

- open the window;

- show the chosen VRN;

- show its previous record entry (if any);

- validate the user inputs and cycle the caret;

- update the cumulative fuel and average mpg values from the new
user-entries;

- update the chosen vehicle file with the entered-and-validated fuel
consumption data (when confirmed by the user).

These additions are going to take quite a lot of extra program lines - but
they are not going to involve any new Wimp programming feature and
only one new Dr Wimp wimp-function is introduced. Therefore, we need
only give brief descriptions of the many additions made in this chapter.

Program additions
The first three items on the above list are inter-related. You will recall that
the vehicle files are named in numerical order Car1, Car2 etc. We need to
know this number in order to open and update the right file. We find it by
reading the title from the particular sub-menu which appears and, in turn,
use this title to search the array CarReg$() - thus giving us the record file
numerically.

Therefore, after loading the new window (from template) at Line 540, the
new routine in Lines 3010-3530 carries out the first three actions on the
above list - leaving a gap to be filled later for the other sub-menu option
selection (the graph). As usual, the same result could be achieved in other
ways.

10. Yet more windows and menus

113

Line 3030 is the one which introduces the only new wimp-function in this
chapter, FNwimp_getmenutitle(menu%), and its name is fully self-
explanatory.

A new app-function PROCapp_InitialFill(ChosenCar%) is called in
Line 3240 and defined at Line 6090 onwards. Using several calls to
PROCwimp_puticontext, this app-function fills the FuelUpdate
window with the previous data from the chosen car file (or preset initial
values if the car file does not yet hold a previous fuel entry). A new array
Previous$() is also created to hold this data, for convenience.

Also introduced (at Line 12500 and Line 12770) are two new general
utility app-functions, called FNapp_TwoDecPlaces(Number?) and
FNapp_DecimalDate(Date?). The first is used frequently in the
program to format user-input and other numbers uniformly to two decimal
places. It rounds correctly and also deals consistently with zero and whole
numbers. Note that it takes a string and returns one.

The second converts a date - which must be a string in the dd/mm/yyyy
format - into a decimal number, with the years as the integer part. This is
used to test whether one date is later than another.

(You may find these two app-functions useful in other programs.)

With modifications, the already-existing caret cycling and user-entry
validation app-functions from Chapter 7 can be used for the “Fuel Update”
window - provided the three user-entry icons have consecutive icon
numbering. The initial coding anticipated this.

One of the user-entry types - fuel quantity in litres - is a new one, so we
need an extra validation routine to cover that, as well as a new routine to
update the average fuel consumption. These are:

PROCapp_UpdateCumLitres (at Line 8910)
PROCapp_UpdateAvMpg (at Line 9040)

Further, there are a couple of additional validation steps needed for
mileage and date entries, but only in the “Fuel Update” case - to ensure
that the mileage is greater than last time and that the date is not earlier
than last time.

10. Yet more windows and menus

114

There are several other consequential, but simple, additions to:

PROCuser_mouseclick
PROCuser_openwindow
PROCuser_closewindow
PROCuser_keypress
PROCapp_FuelInit
FNapp_DoubleCheck
PROCapp_ClearUserIcons
PROCapp_MoveCaret
PROCapp_CheckAllEntries.

Fuel file record
Once a valid set of new entries has been made, the user is given the option
to clear them or update the file with them. PROCappUpdateFile(Car%)
is the new app-function to do this - starting at Line 6670.

As before, it is useful to store the three validated entries (plus, this time,
the two consequential entries for cumulative litres and average m.p.g.) in
the array Valid?() to assist in checking that the user has not changed the
entries after all three are validated.

A simple file structure has been chosen. A single fuel update record
comprises the contents of the five icons resulting from the new entry i.e.
litres, mileage, date, cumulative litres and average miles-per-gallon.
Clearly, other possibilities exist.

Records are added to the vehicle file in sequence after the file header
space. It is worth noting that it makes things a little easier if each update
record takes up the same amount of space on the file, which is also picked
up below. To make the program work for either Basic V or Basic VI a
standard record length of 48 bytes has been set in PROCapp_FuelInit.
(44 bytes would be needed in Basic VI.)

Once the file has been updated, the FuelUpdate window is prepared for
further updates by transferring the just-made entries to their ‘previous’
counterparts, incrementing the record numbers and clearing the user-entry
icons and corresponding arrays.

10. Yet more windows and menus

115

Pause to reflect
The first main objective of our tutorial exercise has now been reached and
further additions concern only the display and printing of graphs of the
stored fuel records.

Listing reference: This is obviously an important milestone, so
we will save the application at this stage as !Fuel10a.

Numbers or strings?
Despite the fact that all displayed entries in our icons are strings, the same
items in the new files are all numbers (except for the date).

There is a dilemma here: we need numbers to do the calculations but
strings for icon display. So, frequent conversion between numbers and
strings is inevitable.

All other things being equal, it seems preferable to file numbers as
numbers - simply because they then occupy a known number of bytes,
unlike their string conversions.

When converting from a string to a number and then later back to a string,
be very careful to truncate the final string every time to avoid the
annoying effect of internal ‘rounding errors’ with real numbers, (e.g. 42.00
appearing as 41.9999999...) You will note in the listing that
FNappTwoDecPlaces is often used to do this.

10. Yet more windows and menus

116

10. Yet more windows and menus

117

11. Wimp graphics (The principles)

Before taking our tutorial application further, it will help to have a look at
some points about graphics in general in Wimp programs.

Fundamentals
There is more than one way of putting graphics onto the desktop screen
and each has its pros and cons. The differences concern the actual screen
display method rather than the generation of the graphic itself. For
example if we want to show a graph on a Wimp screen we can:

- draw it directly; or

- construct it as a sprite, then plot the sprite to the screen; or

- construct it as a drawfile, then plot the drawfile to the screen.

In each of these methods, the actual graphic construction will be the same
and use the familiar Basic MOVE, DRAW, PLOT etc. keywords.

By and large, the first method - direct drawing - is the one most likely to
be used and this is what our tutorial application will do.

Coordinates
There is no great difficulty in designing graphics for direct display into in
a desktop window once it is appreciated that, effectively, there are two
overlapping coordinate systems in play simultaneously.

Firstly, there is the screen graphics coordinate system (which you may
well know from non-Wimp programs). This, by default, uses the bottom
left corner of the screen as its graphics origin. It is important to realise that
the final instructions given to the computer to produce something on the
screen are going to be in these screen coordinates.

11. Wimp graphics (The principles)

118

But a few moments thought will show that this screen reference is not
going to be very convenient for the programmer to specify points in a
Wimp window which, at any point in time, may (due to scrolling, sizing,
etc.) show only part of its defined total window work area - and, as if that
wasn’t enough - can be moved all over the screen by dragging.

Clearly, for window design and programming we need to be able to
specify points with reference to the window itself - and the only sensible
reference is one of the corners of the total defined work area of the
window. The corner chosen - you may be surprised to learn - is the top left
corner of the work area. (Yes - this means that all y-axis values are going
to be negative if they are to fall within the work area.)

This choice is not so odd when we reflect that (in English, anyway) we
normally regard the top left corner of a page as the starting point.

The diagram on the next page shows the relationships.

Thus, any point can be defined with respect to its window work area
position by specifying its workx and worky values - and these values
will not change, whatever we do to the window.

The same point can also be defined with respect to its position on screen
by screenx and screeny - but these values will change frequently,
whenever we move, scroll or re-size the window, in fact.

So, for convenience, we normally do all our window design using ‘work
units’ and all the actual plotting to screen is done in ‘screen units’.

How (and when) do we convert between the two? Well, the answer is that
- by and large - we don’t. We let the Wimp do it for us, and it is
specifically designed to do this via SYS calls - particularly one which
provides full information on the current state of any window.

As usual, Dr Wimp makes it even simpler, with a series of wimp- and
user-functions optimised for plotting text, graphics, sprites and drawfiles
onto the screen or window - with colour and font control where applicable.
Also provided are wimp-functions to do any coordinate conversions which
may become necessary.

11. Wimp graphics (The principles)

11
9

Visible Part of Window

Computer Screen Window Work Area Origin

Point in visible window

workareawidth

screenx

scrollx

workx

windowwidth

Screen Graphics Origin

s
c
re

e
n

y

s
c
ro

lly

w
o

rk
y

w
in

d
o

w
h

e
ig

h
t

w
o

rk
a

re
a

h
e

ig
h

t

Window Work Area

11
. W

im
p
 g

ra
p
h
ics (T

h
e
 p

rin
cip

le
s)

120

The Redraw process
So far in our tutorial application, all our text and sprite ‘plotting’ has been
into icons. As we have seen, this is extremely simple and the Wimp
automatically takes care of all the display management necessary when we
move and/or scroll any window containing icons - and also when icons are
revealed again after being covered by another window.

However, when it comes to displaying graphics designed by the user/
programmer - or putting text directly into a window - the Wimp cannot
take all the load. In these cases, the Wimp needs help when that window is
initially opened and subsequently whenever it is moved/scrolled/resized
etc.

So, taking as an example our wish to display a graph, we have to redraw
that graph (or perhaps only part of it) often - and the same ‘redrawing’
action is also used to display it initially.

This explains why the Wimp calls this the redraw process. This process
applies to whatever method we use actually to plot the graphic to the
screen i.e. whether sprite, drawfile or directly.

The Wimp activates the redraw process using Reason Code 1, the Redraw
request - and this is linked with the SYS calls:

SYS “Wimp_RedrawWindow”
SYS “Wimp_GetRectangle”

These SYS calls are used in a special way to ask the application program
to redraw the graph (or whatever) for only those parts of the window
necessary to produce the new screen. (This may be the whole of the
window but might be just a part of it that was previously - or is now -
hidden by another window, or perhaps the same portion as before but now
in a different place on the screen.)

We do not have to worry about any icons in such windows; they are not
regarded as part of the redraw process.

Whenever a redraw is requested by the Wimp it breaks the required new
area up into rectangles - maybe only one - and calls for each of these
rectangles to be redrawn in turn, until all have been completed. (On initial
opening of a ‘redraw window’ Reason Code 2 causes the non-redraw parts

11. Wimp graphics (The principles)

121

of the window to be displayed and then Reason Code 1 is automatically
generated to call for the redraw parts.)

Programming this activity ‘from scratch’ is not instinctive and it takes
time to understand the process properly. However, once the penny drops it
is different rather than difficult. The important thing to note is that all our
custom graphics/direct text programming can take place within the
response to Reason Code 1 - the Wimp takes care of the rest.

It is worth noting in this process that although, generally, the Wimp asks
only for a smaller rectangular part to be redrawn each time, there is
nothing to stop you responding by redrawing the whole graphic window
each time - even though some of it may be unnecessary. Obviously, this
approach has a speed implication for a very large and/or complex graphic,
but there might not be a significant time penalty for a simple one.

Finally, one very important advantage of the redraw process is that once
you have got it right, you can usually use exactly the same coding for
producing hard copies of the (wysiwyg) graphics from a printer - but more
on that in a later chapter.

Dr Wimp’s approach to graphics
Dr Wimp removes nearly all the pain - mainly due to the user-function:

PROCuser_redraw(window%,minx%,miny%,maxx%,maxy%,
printing%,page%)

Every time the Wimp issues Reason Code 1, the DrWimp library calls this
user-function at least once, passing to the program each time live values
for the long list of parameters shown. DrWimp will then recall this user-
function for each rectangle requested by the Wimp.

As usual, the programmer’s job is to fill the initially-empty DEF PROC
using these parameters as and if required.

At the moment in our tutorial we are only interested in the minx%, miny%,
maxx% and maxy% values. These are simply the corners (in screen OS

11. Wimp graphics (The principles)

122

units) of the rectangle of window% that the Wimp wants redrawn. As we
shall see in the next chapter, all the complication of the redraw process
and its SYS calls is completely hidden behind the Dr Wimp scenes. (We still
have to grapple with the two coordinate systems though!)

11. Wimp graphics (The principles)

123

12. Wimp graphics (The practice)

With the general introduction provided by Chapter 11, we can now start
things rolling to produce a graph of a vehicle’s fuel consumption history.

This is fairly straightforward, but because of our later intention to be able
to print the graph we need to do some preparations before we actually get
to the graph drawing itself. The sequence we will use is:

-Design and load a new window for the graph;

-Re-size this window to reflect the paper size in the currently loaded
printer driver;

-Draw the graph.

Redraw windows
Our new window for the graph will be called ‘FuelGraph’ and, initially, it
is simply an empty window of any convenient size to show on the screen.

However, this blank window needs to have one very important
characteristic built into its definition: the ‘auto redraw’ option must be
disabled (in the template editor - see Appendix 7). This tells the Wimp that
Reason Code 1 is going to be needed i.e. the program needs to assist in
displaying the window contents - as described in the preceding chapter.

When you disable ‘auto redraw’ it is likely that, in the template editor, the
window will be displayed with its background crosshatched - as below.

12. Wimp graphics (The practice)

124

(The cross-hatching will not appear in the program use of the window.)

We don’t happen to want to add any icons to this window definition, but
there is no reason why they couldn’t be added as usual. The Wimp would
then manage the screen display/updating for the icons in the usual way -
the need for a redraw process applies only to putting our custom graphics
directly onto the window background. (Note that any icons would be
displayed ‘on top of’ the redraw graphics.)

Our first step is to load the new window - at Line 550. Having done this,
we need to add to PROCuser_menuselection so that the new window is
initially opened in response to selecting Show graph on the sub-menu
from any of the VRN items on the main iconbar menu

12. Wimp graphics (The practice)

125

On an interim basis, just add the following to allow you to check that the
blank new window is opening correctly:

3300 WHEN 2
3310 PROCwimp_openwindow(FuelGraph%,1,-1)

In principle, we could now proceed to draw the graph in the displayed
window, merely by adding something to PROCuser_redraw. To confirm
this, add the following temporary line:

950 PROCwimp_plotwindowrectangle(window%,50,-300,
300,200,1)

and you will get a black square appearing in the new window if you select
‘Show graph’ from the iconbar submenu.

Regard this as only a confidence building step and delete this
temporary line after you have tried it.

Currently, the size of our new window, as created in the template, is
arbitrary and may not be a good size for showing our graph. With our eye
on the future need to produce hard copy, it would be nice to try to produce
a ‘what-you-see-is-what-you-get’ display i.e. the displayed graph window
ought to look like the sheet of paper on which we are later going to print
the graph.

So, we need to resize the graph window and Dr Wimp has several helpful
wimp-functions for this.

(We cannot sensibly do this in the template editor simply because the paper sizes
and print margins will vary considerably among different printers - and the
printer driver may well be changed whilst the program is running).

12. Wimp graphics (The practice)

126

Re-sizing windows
Firstly, let’s have a look at the range of wimp-functions available here.
They are:

FNwimp_getwindowvisiblesize

gives currently displayed width/height

FNwimp_getwindowworksize

gives defined work area width/height

FNwimp_getwindowvisiblework

gives work area coords of currently visible sides i.e. takes
current scroll values into account

FNwimp_getwindowvisiblescreen

gives screen coords of currently visible sides i.e. gives
window position

FNwimp_getscroll

gives scroll values

PROCwimp_resizewindow
PROCwimp_resizewindowvisible
PROCwimpscroll
PROCwimp_scrollto
PROCwimp_openwindowat

As you can divine, the first five read information about the existing size
and the last five allow us to alter some aspect of the window size or
position on screen. With them we can produce a window of any size we
want and place it precisely where we want, with whatever scroll values we
want.

Note that all these functions - except PROCwimp_openwindowat of
course - can be used whether the window is open or closed. If closed, the
first five return values from the window as it was when last open (or as
loaded/created if it has not yet been opened).

12. Wimp graphics (The practice)

127

Back to the tutorial …
For our purposes, we are going to resize the graph window work area to
represent the printer paper: then resize its visible area so that none of the
window is off-screen when we open it initially.

Paper size and printer driver
This leads directly to the question “How do we know the paper size?”
Well, that’s the easy bit. If you have a printer driver loaded it incorporates
a paper definition - and there is a wimp-function to read this. It is:

FNwimp_getpapersize

which allows you to read the paper dimensions and the print margins.

“But what if a printer driver isn’t loaded?” I hear you ask! Once again,
there is a wimp-function to help us! This time it is:

FNwimp_pdriverpresent

and also:

FNwimp_getpdrivername

to find the driver name if you want it.

Our sequence is therefore to call FNwimp_pdriverpresent to see if a
printer driver is loaded.

12. Wimp graphics (The practice)

128

If one is, then we call FNwimp_getpapersize to find the needed
measurements. If one isn’t, then we supply some default paper sizes.
Either way, we end up with a paper size.

Further, if the printer driver is changed at any time while our application is
running - or a driver is loaded for the first time while it is running - then
the DrWimp library once again comes to our rescue by calling
automatically yet another user-function:

PROCuser_printerchange

As usual, the DEF PROC of this user-function is empty by default, so we
can utilise it simply by putting some coding of our choice into it. In this
case we will repeat our check of the printer driver status and change the
paper size accordingly.

As you can see, Dr Wimp really makes printer driver management very
easy.

By the way, if you load a printer driver by running !Printers and then
subsequently (in the same session) quit !Printers, the printer driver still
stays installed. This is sometimes the source of a little confusion until you
know.

(You may wish to note, in passing, that a change of printer driver status is one of
the events which is notified to applications by the Wimp using the Wimp
Messaging system and Reason Codes 17, 18 and 19. See Appendix 10.)

12. Wimp graphics (The practice)

129

Program changes
A little earlier, a temporary addition to PROCuser_menuselection was
made. We can now change that, initially, to:

3300 WHEN 2
3330 ChosenCarFile$=SourceDir$+“.Car”+

STR$(ChosenCar%) :REM** Needed in
‘PROCuser-redraw’ also. **

3360 CarFile%=OPENIN(ChosenCarFile$)
3370 Records%=(EXT#CarFile%-FileHeader%)/

RecordLength%
3380 CLOSE#CarFile%
3460 PROCapp_SizeAndDisplayWindow

This sequence constructs - in ChosenCarFile$ - the exact file-path for
the chosen vehicle - using the value of ChosenCar%, which was found a
little earlier in PROCuser_menuselection.

ChosenCarFile$ will be needed a little later to draw the correct graph.

Although not essential, ChosenCarFile$ is also now defined in
PROCapp_FuelInit by adding:

4940 ChosenCarFile$=“”:REM** Global variable. **

The window resizing
Line 3460 then calls a new app-function which is defined at Line 13620
and within which our re-sizing etc. takes place.

It is worth having a look at this in more detail.

13620 DEF PROCapp_SizeAndDisplayWindow
13710 PROCapp_GetPaperSizes
13730 WindowWidth%=PaperWidth%*ScreenScale
13740 WindowHeight%=PaperLength%*ScreenScale
13760 PROCwimp_resizewindow(FuelGraph%,

WindowWidth%,WindowHeight%)

12. Wimp graphics (The practice)

130

13800 MaxScreenWidth%=FNwimp_getscreensize(0)
13810 MaxScreenHeight%=FNwimp_getscreen size(1)
13830 PROCapp_ResizeVisibleAndDisplay

(WindowWidth%,WindowHeight%,
MaxScreenWidth%,MaxScreenHeight%)

13850 ENDPROC

Firstly, as just indicated above, we get the paper sizes and print margins.
This is done by the new app-function PROCapp_GetPaperSizes -
defined at Line 13890.

13890 DEF PROCapp_GetPaperSizes
13930 Pdriver%=FNwimp_pdriverpresent
13950 IF Pdriver%=0 THEN
13980 PaperWidth%=1488
13990 PaperLength%=2104
14010 LeftPrintX%=180 :REM** Deliberately set

to 180 OS (1 inch), for effect. **
14020 BottomPrintY%=98
14030 RightPrintX%=1466
14040 TopPrintY%=2082
14090 ELSE
14100 PaperWidth%=FNwimp_getpapersize(0,0)
14110 PaperLength%=FNwimp_getpapersize(1,0)
14130 LeftPrintX%=FNwimp_getpaper size(0,1)
14140 BottomPrintY%=FNwimp_getpapersize(1,1)
14150 RightPrintX%=FNwimp_getpapersize(0,3)
14160 TopPrintY%=FNwimp_getpapersize(1,3)
14210 ENDIF
14230 ENDPROC

This app-function first checks to see if a printer driver is loaded. If there
is, it calls FNwimp_getpapersize several times (with different
parameter values) to extract the printer driver paper width, height and
print margins. If no driver is present then sensible default values (here,
typical of an A4 page) are used. Note (Line 14010) that the left-hand print
margin is deliberately made fairly wide to emphasize this situation
visually (purely for tutorial purposes) and to make the effect of any
subsequent printer driver loading obvious.

At Line 13760 of PROCapp_SizeAndDisplayWindow, the work area of
the graph window is then resized to the paper width/height, scaled by a
new global variable ScreenScale (defined at Line 5100 in

12. Wimp graphics (The practice)

131

PROCapp_FuelInit) with a value of 0.75. This value is chosen solely as
an attempt to make the displayed graph window approximate to the actual
printing paper size. The value will be about right for a 17-inch monitor,
but you will need to alter it for other sizes - smaller for bigger screens, or
larger for smaller screens.

The maximum screen width and height in the current screen mode are then
read using a new wimp-function:

FNwimp_getscreensize

This is called twice - once to get the width and once to get the height,
merely by changing the parameter value. As we have already seen with
FNwimp_getpapersize, this is a typical Dr Wimp method for extracting
values which are actually provided by a SYS call, behind the scenes.

Another new app-function, PROCapp_ResizeVisibleAndDisplay,
then does any necessary resizing of the visible window area (to keep it
within the screen) and then causes the result to be displayed.

Within DEF PROCapp_ResizeVisibleAndDisplay (at Line 14270) a
decision is taken about the ‘standard’ displayed window width. Here, the
A4 paper width of 210mm has been chosen - and is converted into OS
units at Line 14330 using yet another useful wimp-function:

FNwimp_lengthtoOS

which allows a physical length (as printed on paper) to be converted to OS
units on the screen - either from inches or millimetres - and it can be
scaled up or down. It has, of course, a complement:

FNwimp_OStolength

Armed with this data we can then check whether or not the resized
window width is greater than the standard 210mm. If it is, we reduce the
visible window width to the standard: otherwise we make the visible width
the same as the resized width.

12. Wimp graphics (The practice)

132

Something similar needs to be done about the visible window height
 and here we are pretty sure the resized window height will well-exceed
the display maximum. The arbitrary choice here - at Line 14420 - is to
restrict the initially-displayed resized window height to no more than
three-quarters of the screen height.

Thus, at Line 14520 we use:

PROCwimp_resizewindowvisible

with the above-calculated visible width and height values.

When it comes to actually displaying the window, we opt simply to redraw
it if it is already open - to preserve its current screen position - using the
new wimp-function PROCwimp_redrawwindow.

However, if the window needs to be opened then the resized visible
window is centred on the screen, at Line 14620, by:

PROCwimp_openwindowat(window%,x%,y%,stack%)

This is yet another new, but easy, wimp-function which allows us to open
any window with its top left corner at a specified place on the screen i.e.
we have to supply screen coordinates (in OS units) for x% and y%.

12. Wimp graphics (The practice)

133

Drawing the graph
At long last (you may feel) we can now concentrate on filling
DEF PROCuser_redraw in order to draw the graph.

It will be sensible to carry out the detailed work in a new app-function
(PROCapp_DrawGraph at Line 14710) so we can simply start with the
following additions to PROCuser_redraw:

940 DEF PROCuser_redraw(window%, minx%, miny%,
maxx%, maxy%,printing%, page%)

970 CASE window% OF
980 WHEN FuelGraph%
990 PROCapp_DrawGraph(ChosenCarFile$,

window%,minx%,miny%,maxx%,maxy%,
printing%,page%)

1010 ENDCASE
1030 ENDPROC

Thus, we just pass all the parameters through to our new app-function,
along with the path of the file of our chosen vehicle.

The four x/y parameters are the bottom left and top right corners of the
window rectangle which needs to be drawn/redrawn - as described in the
‘redraw’ process of the previous chapter. They are given in OS units and
they are ‘screen units’ i.e. relative to bottom left corner of the screen.

However, although it makes sense to pass all the parameters through - in
case we later want to change things - our graph is not complicated and we
are therefore going to take the easier alternative of redrawing the whole
graph each time a redraw is called for - so we will not actually need to use
the x/y parameters.

(The !Grid application which comes with the Dr Wimp package (in its
Examples directory) gives good information on how to use the redraw rectangles
in ‘busier’ graphics.)

Before proceeding, remember that our window design work will need
to be in ‘work area coordinates’ but our actual plotting will need to be
in ‘screen coordinates’. In the following program changes, the variables
are all named with ‘screen’ or ‘work’ in them to show which coordinates
are being used.

12. Wimp graphics (The practice)

134

Showing the paper
Our first graphic step is essentially cosmetic, but also helpful - that is, to
display the print margins in the graph window. These margins were
obtained earlier (from the printer driver or default values) when resizing
the graph window to the paper size. A pleasing visual effect is produced if
we display the printing area as a white sheet with the surrounding margins
showing as the normal desktop window grey.

The following lines of DEF PROCappDrawGraph do this - taking the
work area paper coordinates and converting each to screen coordinates
using the wimp-function FNwimp_worktoscreen, scaled by the
previously set global variable ScreenScale. A simple RECTANGLE call
then plots the ‘paper’ in white onto the normal window grey background:

14860 REM** Convert the printing margins to
rectangle corners in screen coords.
 **

14870 PrintAreaScreenMinX% =
FNwimp_worktoscreen(FuelGraph% ,
LeftPrintX%*ScreenScale, 0)

14880 PrintAreaScreenMinY% =
FNwimp_worktoscreen(FuelGraph% ,
 (-PaperLength%+BottomPrintY%)*
ScreenScale,1)

14890 PrintAreaScreenMaxX% =
FNwimp_worktoscreen(FuelGraph% ,
RightPrintX%*ScreenScale,0)

14900 PrintAreaScreenMaxY% =
FNwimp_worktoscreen(FuelGraph% ,
 (-PaperLength%+TopPrintY%)*
ScreenScale,1)

14940 REM** Display the ‘paper’ rectangle in
white on the screen, before any
drawing. **

14950 PROCwimp_setforegroundcolour(255 ,
255,255):REM**White **

14960 RECTANGLE FILL PrintAreaScreenMinX% ,
PrintAreaScreenMinY% ,
(PrintAreaScreenMaxX%-
PrintAreaScreenMinX%),
(PrintAreaScreenMaxY%-
PrintAreaScreenMinY%)

12. Wimp graphics (The practice)

135

14970 PROCwimp_setforegroundcolour(0,0,0)
:REM** Reset to Black **

If you make just these changes and run the program you will see the
‘paper’ duly plotted when you choose ‘Show graph’ from the iconbar sub-
menu.

Note also the two calls to PROCwimp_setforegroundcolour, which
changes/sets the plotting colour using ‘rgb’ values from 0-255. Here, it is
first set to White and, after use, it is reset to Black. It is always a good
policy to reset a colour back to the default (Black) after use - particularly
if White is being used.

The graph axes
We can now do a similar thing for the graph axes and text labelling. First
decide where to draw the graph in the (resized) graph window. You may
find a rough sketch helpful here but, arbitrarily, the axes have been set
25mm (1 inch) in from the left/bottom/right of the printed paper borders
(Line 15020) and 50mm in at the top (Line 15100). Other arbitrary values
have been set for the title text.

To make the coordinate conversions very clear, it is done in two steps.
Lines 15070-15130 calculate the work coordinates then Lines 15180-
15240 do the screen coordinates conversions.

Then Line 15550 simply passes all the values to PROCapp_PlotAxes for
the actual axes plotting - followed by PROCapp_PlotGraph for the graph
itself. These two app-functions can thus ignore all the work/screen
conversion issues.

Apart from introducing some new wimp-functions for text plotting, there
is nothing unusual in PROCapp_PlotAxes. The chosen car file is
accessed to find the range of fuel consumption and the number of records
already logged for that vehicle. From these, the graph scales are
calculated. (The graph is always the same physical size, with the scales being
adjusted as necessary for each vehicle.)

12. Wimp graphics (The practice)

136

Text plotting
For demonstration purposes, PROCapp_PlotAxes deliberately uses more
than one method for adding text to the graph axes. Firstly, using ordinary
VDU5 statements, producing System Font. Then using two of several
wimp-functions available for text - the first being:

PROCwimp_plottext

which takes several parameters to control the font choice, size, colour and
position. The second is:

PROCwimp_plottexth

which is almost the same but uses a ‘font handle’ for the specific font type
and size instead. The handle is obtained from using FNwimp_getfont at
Line 5150 in PROCappFuelInit.

If you compare the first few parameters of PROCwimp_plottext and
PROCwimp_plottexth you will easily see what a font handle is: it
simply represents a specific font type and size.

Font handles are the main way of defining outline fonts in wimp
programs. One advantage of them is that once a font handle has been set
up (simply by using FNwimp_getfont as above, in Dr Wimp) the handle
can be used as many times as you like within the application
programming.

More detail on text plotting and fonts is given later in Chapter 20.

12. Wimp graphics (The practice)

137

Plotting the graph
After all this, the actual graph plot is somewhat of an anti-climax. It is
merely a matter of reading each record in turn from the chosen car file and
drawing a short line between each average miles-per-gallon value
successively, with a DRAW statement in a control loop.

A MOVE statement is used for the very first record to set the starting point
of the graph plot.

Three horizontal dotted lines are then drawn across the graph, l mpg apart
and centred roughly at the final average position, to provide a convenient
variation gauge.

As you can see, there are no wimp-related statements in
PROCapp_PlotGraph i.e. only the usual Basic graphics plotting
commands are needed.

Tidying up
There are a few housekeeping jobs to do before we can leave this section.

Firstly, what happens if we try to plot the graph of a filed vehicle which
does not yet have a fuel history? At the moment an error will occur as the
graph plotting procedure tries to read non-existent records.

We need to trap this and the best way to do it is to stop the program
entering the graph-plotting routines if a file does not have sufficient
records to generate a sensible graph - say, less than 2 records.

The routine at Lines 3400-3470 does the necessary. (Note that if this
circumstance occurs when the graph window is already open, then the
window is closed after the warning is given.)

The second issue concerns the earlier point about the printer driver and
what happens if we change (or load/delete) the driver whilst the program
is running.

All we need to do - at Line 4280, inside PROCuser_printerchange - is
call PROCapp_SizeAndDisplayWindow again, but only if the graph
window is already open.

12. Wimp graphics (The practice)

138

When run, the screenshot below shows the result of selecting the ‘Show
graph’ option from the iconbar sub-menu.

Pause for reflection
We have done quite a bit in this chapter. Although none of it has been
difficult, the preparation and organising the window, paper/ printer driver
information, plus the work and screen coordinates took much more time
than the actual graph drawing itself. Had we not had the help of Dr Wimp
in these tasks there would have been a great deal of tedious nitty-gritty -
and maybe much hair-tearing!

The key point is to plan the sequence carefully and then take it a step at a
time. By and large, by this stage in the application, it is possible to check
that each step is working OK before going on to the next.

12. Wimp graphics (The practice)

139

Listing reference: This is obviously an important milestone, so
we will save the application at this stage as !Fuel12a.

It is worth mentioning here that - although very suitable for introducing
newcomers to wimp graphics - the main disadvantage of plotting a graph
directly to the screen and then redrawing the whole graph and its axes
(even when only a partial redraw is needed) is that any screen updating
(e.g. during window dragging) can take a noticeable time if more than a
few graph points are involved.

Further, in our particular tutorial, the emphasis has been on clarity in the
listings, and this means that some steps and/or calculations have been
included within the umbrella of PROCapp_DrawGraph when - for speed -
they might be better done outside.

12. Wimp graphics (The practice)

140

12. Wimp graphics (The practice)

141

13. Creating windows/icons from
within a program

Although our next major task in the tutorial application is printing, we will
first need to add something to allow the user to trigger the printing
process. A convenient way to do this is with a ‘Press to print’
button on the graph display and this provides a good excuse to introduce
Dr Wimp’s facilities for creating windows and/or icons ‘on the fly’ i.e.
from within the !RunImage program rather than being loaded after design
in a template editor.

You may, at first, wonder why anyone would want to bother about creating
windows/icons other than via a template editor - particularly as we took
some trouble in Chapter 2 to stress both the great advantage of templates
and how easy Dr Wimp makes it to use them.

The reason is that there are some circumstances where - using Dr Wimp or
not - a window template cannot be used (or not wholly) and there is also
the fact that sometimes you may not want everyone to have easy access to
a window/icon design.

For example, the number of icons needed might vary e.g. to report the
results of a search. Or the position of the icons in a window might need to
change if the window is resized during the program run.

Consequently, Dr Wimp offers a pair of wimp-functions and the utility
application !CodeTemps to help us.

13. Creating windows/icons from within a program

142

The two wimp-functions take many parameters - which are similar:

FNwimp_createwindow(vminx%,vminy%,vmaxx%,vmaxy%,
wminx%,wminy%,wmaxx%,wmaxy%,flags%,
colourflags%,button%,title$,
titleflags%,maxind%,sarea%)

FNwimp_createicon(window%,wminx%,wminy%,wmaxx%,
wmaxy%,flags%,esg%,button%,fcol%,
bcol%,fhan%,text$,sprite$,sarea%,
maxind%,valid$)

The Dr Wimp documentation gives a full explanation of these parameters,
but you can see that, essentially, they line up with many of the entries
needed in the parameter block for their corresponding SYS calls (see
Chapter 3 and its !TestApp1).

For windows, the parameters determine the work area and visible size and
position on screen, the value of flags% and colourflags% determine
whether or not scroll bars, back icon etc. are present and their colour.

The parameter button% decides how mouse-clicks made over the
window background are to be interpreted (the ‘button type’) - and closely
follows the same parameter in FNwimp_createicon below.

title$, titleflags% and maxind% determine the titlebar text,
characteristics and the allowed maximum length of the title text (if set to
indirected).

sarea% is the handle of a sprite area holding any sprites used in the
window definition - 0 meaning the Wimp sprite pool, the most usual
value.

For icons, the parameters determine the window to which they will be
added, the size and position in the window, the ‘icon flags’ value, the ESG
value (see Appendix 7 !TemplEd), the button type, colours, text font, text
string, validation string, etc.

The value of button% (for both windows and icons) lines up exactly with
the Wimp’s ‘button types’.

13. Creating windows/icons from within a program

143

Once the parameters are determined, the use of a call will create the
window and/or icon and return handles accordingly.

For a window, the end result is the same as loading a template i.e. the
handle can then be used to open the window etc.

For icons, display will occur automatically at the next opening/redraw of
the window (or redraw of that part of the window where the icon is to be
placed) - and you can force this by using PROCwimp_redrawwindow or
PROCwimp_updatewindow after icon creation.

!CodeTemps utility
This is all well and good, but it doesn’t remove the need to have to decide
the detailed parameter values for window and/or icon creation.

Once again, Dr Wimp allows you to have the best of both worlds - that is,
to use a template editor to design your window/icons and then to convert
the result automatically into a set of parameters for the above
wimpfunctions. This is the role of the utility !CodeTemps, which comes
with the package.

This is what happens. You design your windows and/or icons in a template
editor as usual and save the resulting window template in a normal
template file.

If you only want icons e.g. to create in an existing window, you will still
have to design them in a dummy window and save the window template.
Some simple editing will then be needed, as we will see a little later below
when a specific example is described for the tutorial application.

!CodeTemps is then loaded onto the iconbar and the template file is
dragged to it. This produces a small window with an icon for each window
held in the dragged file. (The window will probably look very much like
the template file window from your template editor.)

If you then click on one of these icons a Save box will appear showing a
Basic file which, as usual, you need to drag to a convenient directory
window. If you then load the resulting Basic file into a text editor you will

13. Creating windows/icons from within a program

144

see a set of Basic statements comprising all the calls to
FNwimp_createwindow and FNwimp_createicon necessary to
produce your designed window/ icons.

It is as simple as that.

Back to the tutorial …
As was said at the start of the chapter, we need to give the user a means of
triggering the printing and a ‘Press to print’ button will fit the bill.

In fact, we are going to add something just a little more fancy: there will
be a small group of icons showing the name of the loaded printer driver as
well as a ‘Press to print’ button. Further, we will only enable this
latter button if a printer driver is actually loaded.

The icons were designed in !TemplEd in a small dummy window called
Dummy, saved in a templates file called Create - and you will find this
template file in the folder CreateIcon in the Progs directory on the disc
which comes with this book.

As long as they are grouped together in the way they are to be used, it
doesn’t matter too much where the icons are located in the Dummy
window. The only points to watch are:

- the text in the middle icon - the name of the printer driver -needs
to be set as ‘indirected’ and its maximum size should be set with
the longest string likely to be used, as shown in the screenshot
below.

- the ‘Press to print’ icon is set to the ‘Menu’ button type and its
ESG value is set to 1.

13. Creating windows/icons from within a program

145

(In the above figure, the window has been given a white background and the top
two icons have been given borders and filled white - solely to show their
construction more clearly. In the the Create template, these icons are as they are
to appear in the tutorial i.e. they have no border and they are filled with a
different colour.)

If you load !CodeTemps and drag the Create templates file to it, the
following window will appear:

Click on the Dummy icon and a Basic file Save box will appear - with the
default name Dummy. Drag this file to a place of your choosing. (We need it
only temporarily and a copy is also in the Create folder mentioned above.)

Load this file into a Basic editor to see:

10 Dummy%=FNwimp_createwindow(546,772,1118,1148,
0,936,1236,0,%00000001011111111,
&727031C,0,“Dummy”,%00001101,6,0)

20 itext$=“”
30 icon0%=FNwimp_createicon(Dummy%,38,-276,292,

28,%000000100111101,0,0,7,1,0,
itext$,“”,0,1,“R4”)

13. Creating windows/icons from within a program

146

40 HomertonBold12%=FNwimp_getfont(“Homerton.
Bold“,12)

50 itext$=”Printer driver:“
60 icon1%=FNwimp_createicon(Dummy%,54,-114,276,

42,%000000101111001,0,0,0,0,
HomertonBold12%,itext$,“”,0,16,“F17”)

70 HomertonBoldOblique12%=FNwimp_getfont
(“Homerton.Bold.Oblique”,12)

80 itext$=“(None loaded)”
90 icon2%=FNwimp_createicon(Dummy%,54,-186,276,

114,%000000101111001,0,0,0,0,
HomertonBoldOblique12%,itext$,“”,0,14,
“F17”)

100 itext$=“Press to print”
110 icon3%=FNwimp_createicon(Dummy%,54,-262,276,

190,%000000100111101,1,9,7,1,0,
itext$,“”,0,15,“R6,3”)

As promised, this listing contains the precise statements calling the
wimpfunctions to produce the Dummy template window and its icons.
Note the following points:

- arbitrary icon handles are assigned, such as icon0% at Line 30.
(We change these a little later);

- the icon text is always extracted as a separate line before the call to
FNwimp_createicon (e.g. Lines 20 and 50);

- where an outline font is used in the icon definition, its handle is
obtained before the call to FNwimp_createicon in which it is
first used (e.g. Lines 40 and 70).

This process takes all the hard work out of it, but there is a little editing to
do before we can transfer the lines to our tutorial application.

Firstly, we only need the icons, so the Dummy window definition in Line
10 can be deleted. Secondly, we want these icons in our graph window, so
all occurrences of Dummy% need to be changed to FuelGraph%. Thirdly,
although not essential, the new icon handles are renamed to be more
descriptive than those provided from !CodeTemps. We have used
Frame%, Label%, Driver% and Print%.

13. Creating windows/icons from within a program

147

Then we need to do some fine adjustment to the icon positions to put them
where we want them in the graph window. A detailed look at Lines 30, 60,
90 and 110 above shows that the framing icon surrounds the other three -
which latter all have the same size and x-position.

We need to preserve these icon sizes and relative positions and, in case we
want to move the icon group at any time, it is clearly best to use variables
instead of values.

The new app-function PROCapp_AddPrintIcons does the necessary -
and it also incorporates the icon text within the FNwimpcreateicon calls
instead of separately. It is called at Line 580 and defined at Line 13250.

If you make these changes, run the application and select a graph, the new
icon group will be seen in the top left corner of the graph screen. This
corner has been chosen because it will not be affected by any window
resizing.

At the moment, the printer driver icon will still be showing the text used in
its creation. We therefore need to add some lines to
PROCapp_GetPaperSizes (Lines 14060-14080 and 14180-14200) to
put the printer driver name (or ‘None loaded’) and enable/disable the
‘Press to print’ button.

The result is that, whenever ‘Show graph’ is chosen from the iconbar
sub-menu and whenever the printer driver status changes when the graph
window is already open, the graph window will be resized to the new
paper size and its margins and the printer driver name will be updated
correspondingly. Also, the ‘Press to print’ button will only be
enabled if a printer driver is present.

These changes now allow us to proceed with the printing.

Listing reference: We will save the application at this stage as
!Fuel13a.

13. Creating windows/icons from within a program

148

13. Creating windows/icons from within a program

149

14. Printing

The focus for printing from a desktop application is the use of printer
drivers loaded by the RISCOS !Printers application (maybe enhanced
by a ‘turbo’ package).

The Wimp uses the Messaging system via Reason Codes 17 & 18 to
interface between an application and the printer driver - and this has to be
harnessed to a special control loop sequence involving several SYS calls.
The RISCOS PRM explains the messaging protocol reasonably clearly but
it has to be said that practical implementation of the whole process can be
confusing.

The Dr Wimp package employs both wimp- and user-functions to help
make the whole process very much easier.

The Dr Wimp printing options
Dr Wimp caters for two types of printing need: firstly, printing something
which has already been produced as a window display via the redraw
process (i.e. wysiwyg, more or less) and, secondly, printing something
which does not necessarily follow anything that is displayed in a window.
The Manual calls these the ‘redraw printing’ and the ‘user printing’
methods, respectively.

It will perhaps not be a surprise that the redraw method uses
FNuser_redraw - which was used to produce the screen image in the
first place. Alternatively, for ‘user printing’, a new user-function
PROCuser_print is provided.

14. Printing

150

General points
The process of printing (using Dr Wimp or not) involves several steps
which, need to be carried out in the right order. Where Dr Wimp scores, as
in its other facilities, is that it makes things a lot simpler.

Dr Wimp provides functions to:

Check that a printer driver is installed (already introduced);

Check paper size and borders (already introduced);

Convert between paper and screen coordinates;

Check progress of printing, with option to cancel;

Print ranges of pages and number of copies of each;

Fit more than one page to an A4 sheet;

Print in ‘portrait’ and ‘landscape’ orientations;

Declare all fonts to be used, including any in rendered
Drawfiles (for Postscript printer drivers).

The Dr Wimp Manual takes you through each of these facilities in a
typical sequence, giving sample listings at each step.

As usual with Dr Wimp, the code you have to write yourself relates
mainly to the plotting of the unique material you actually want to display/
print and getting the sequence of high-level events right. All the tricky
interfacing with the Wimp is safely left to the wimp- and user-functions.

There is also an excellent, complete, application called !PrintTest (in
the Examples directory) which takes a textfile and puts it on the screen
rather like a word-processor output (with a graphic letterhead on the first
page). It allows you to step back and forth through the pages and gives
various wysiwyg print options. In fact, this example program amply
repays careful examination. It is well commented and gives good insight
into the Dr Wimp printing process and several other interesting hints.

14. Printing

151

Back to the tutorial …
As we produced the graph by the redraw method it is natural that we are
going to use ‘redraw printing’ to get a hard copy of this graph. (More is said
on the ‘user printing’ method in Chapter 21.)

In fact, this is good news, because the extra programming to achieve
printing is very little indeed. Essentially, all that needs to be done is to
carry out another round of coordinate conversions within
PROCuser_redraw.

You will recall that, to draw the graph, we started off with work area
coordinates and changed them to screen coordinates. For printing, we have
to change them to ‘paper coordinates’ instead.

Activating the printing
A single call to the wimp-function PROCwimp_print, which has seven
parameters, actually kicks things off - for both ‘user printing’ and ‘redraw
printing’. The general form is:

PROCwimp_print(user%,window%,firstpage%,lastpage%,
perpage%,copies%,orientation%)

The first parameter is used to decide which printing method is to be used:
set it to 0 for the redraw method or 1 for the user method. The second
parameter is ignored if the first parameter is 1, but otherwise it is set to the
window handle of the redraw window involved.

The next three parameters are for use with multi-page documents and will
be looked at in a later chapter. For now they can all be set to 1.

The sixth parameter simply determines how many copies (of each page)
are to be printed and the final parameter sets whether the printing is to be
in portrait (0) or landscape (1) paper orientation.

If the first parameter is set to 1 (i.e. for ‘user printing’) then the user-
function PROCuser_print is automatically called and this is where the
printing instructions would need to be placed.

If the first parameter is set to 0 (i.e. for ‘redraw printing’) then
PROCuser_redraw is automatically called instead - but now with its
parameters set to the relevant printing needs.

14. Printing

152

In particular, the penultimate parameter of
PROCuser_redraw(printing%) will be set to TRUE, and the page
number being printed will be placed in the final parameter page%.
Therefore, in this case, Dr Wimp arranges for PROCuser_redraw to be
called as many times as is necessary to complete the printing job. All the
complication is hidden from us.

The program changes
If the explanation leaves you a bit confused, let’s have a look at precisely
what is done. You’ll find it very easy indeed.

We have already arranged for the ‘Press to print’ button in the
graph window to be disabled if no printer driver is loaded, so we can now
safely kick things off by calling PROCwimp_print as our sole reaction to
pressing the ‘Press to print’ button - whose icon handle is Print%
(see Chapter 13). Therefore, the first step is to add the following to
PROCuser_mouseclick:

1400 WHEN FuelGraph%
1420 CASE icon% OF
1440 WHEN Print%
1490 PROCwimp_print(0,FuelGraph%,1,1,1,1,0)
1510 ENDCASE

This simple routine will set up everything via the PROCuser_redraw
parameters and we can now make a few simple changes to respond to
these accordingly.

14. Printing

153

The main change in PROCapp_DrawGraph is to add:

15280 IF printing%=TRUE THEN
15320 GraphMinX%=FNwimp_worktopaper

(WorkLeftX%/ScreenScale,0,0)
15330 GraphMinY%=FNwimp_worktopaper

(WorkBottomY%/ScreenScale,1,0)
15340 GraphMaxX%=FNwimp_worktopaper

(WorkRightX%/ScreenScale,0,0)
15350 GraphMaxY%=FNwimp_worktopaper(WorkTopY%/

screenscale,1,0)
15360
15370 GraphTitleCentreX%=FNwimp_worktopaper

(WorkTitleCentreX%/ScreenScale,0,0)
15380 GraphTitleCentreY%=FNwimp_worktopaper

(WorkTitleCentreY%/ScreenScale,1,0)
15390
15410 PrintAreaMinX%=FNwimp_worktopaper

(LeftPrintX%,0,0)+2
15420 PrintAreaMinY%=FNwimp_worktopaper

((PaperLength%+BottomPrintY%),1,0)+2
15430 PrintAreaMaxX%=FNwimp_worktopaper

(RightPrintX%,0,0)-8
15440 PrintAreaMaxY%=FNwimp_worktopaper

((-PaperLength%+TopPrintY%),1,0)
15450
15470 RECTANGLE PrintAreaMinX%,

PrintAreaMinY%,(PrintAreaMaxX%PrintAr-
eaMinX%),(PrintAreaMaxY%-
PrintAreaMinY%)

15490 ENDIF

This is very much simpler than it looks. It is merely a sequence of calls to
the new wimp-function FNwimp_worktopaper - converting work values
(after ‘un-scaling’) to paper values. (We could have equally well used
FNwimp_screentopaper to convert from screen values to paper values.)

14. Printing

154

Line 15470 is an added item. It draws the paper printing margins on the
paper for comparison with the displayed ‘white sheet’. This also shows
that you can introduce non-wysiwyg items to the printed sheet if required.

(Don’t be concerned about the extra numbers at the end of Lines 15410-15430.
They are added just to ensure that the margins actually print. Practical printer
driver values can sometimes be rounded to be just outside the printing area rather
than just inside!)

Note where these new lines have been inserted i.e. after the conversions of
the main graph axes coordinates to screen values and before the calls to
PROCapp_PlotAxes and PROCapp_PlotGraph. Thus, when the
‘Press to print’ button has been pressed printing% will be TRUE
and the values passed to the plotting functions will be ‘paper coordinates’
instead of the ‘screen coordinates’.

(If there had not been a good tutorial reason to introduce things in a certain
order, it would be better to put the work-to-screen conversions within an ELSE
statement before Line 15490 instead of where they currently appear. That way the
work-to-screen conversions would not be carried out whether wanted or not - as
they are now.)

The printing will now take place if you try it.

However, you may notice that the text sizes are not quite right - compared
with the wysiwyg screen version - and a few additional changes are
needed:

4890 LargePrintFont%=FNwimp_getfont
(“Homerton.Bold”,24)

16040 IF printing%=TRUE THEN FontPoint%=16 ELSE
FontPoint%=16*ScreenScale

16130 IF printing%=TRUE THEN FontHandle%=
LargePrintFont% ELSE FontHandle%=
LargeScreenFont%

16240 IF printing%=TRUE THEN FontPoint%=12 ELSE
FontPoint%=12*ScreenScale

14. Printing

155

Taking stock
As you can see, the practice is a lot easier than the written explanation! If
you have ever tried to sort out Wimp printing without Dr Wimp you will
appreciate just how much is involved and yet it is now rendered fairly
painless.

As was said earlier, the example program !PrintTest, in the Dr Wimp
package, is also really worth delving into to get to grips with printing.

Postscript printers
Before leaving the program in this chapter, it is convenient to mention that
Dr Wimp has special facilities to cater for Postscript printers, which
require all fonts that are going to be used to be ‘declared’ first.

The Dr Wimp Manual gives fuller details but, essentially, it is done via the
user-function PROCuserdeclarefonts - note the plural - (at Line 4110
in our tutorial application) which is always called automatically from
within DEF PROCwimp_print - which, you will recall, is used by both
‘re-draw printing’ and ‘user-printing’.

There is then a choice of two wimp-functions which can be used within
PROCuser_declarefonts to allow the text-plotting fonts to be declared
by specifying the font name or its handle - and a third wimp-function for
use in case fonts are defined within a drawfile which is to be printed.

As we will not know whether the user of our tutorial application will be
using a Postscript printer or not, it is always safest to declare all the fonts
that we are printing - which is only one in this case.

So we can demonstrate the procedure simply by adding the line:

4140 PROCwimp_declarefont(“Homerton.Bold”)

which uses the wimp-function for declaring the single font by name.

14. Printing

156

To do the same thing for a text-plotting font whose handle we know then:

PROCwimp_declarefonth(fonthandle%)

would be used.

And if our application was printing a drawfile - which process is explained
in detail in Chapter 19 - we would have used:

PROCwimp_declaredfilefonts(dfilehandle%)

which would automatically declare any fonts - again, note the plural -
within a drawfile which has already been loaded into memory in the
manner described in that later chapter. A drawfile will then have a ‘handle’
which is used in the sole parameter above.

Note that we only need to declare the font name for PostScript
printers, irrespective of how many different sizes of it might be
used. However, if you are using font handles - which, of course,
involve both a name and a font size - it is safest to declare all
font handles which are used for printing. It will not matter if
this action actually declares the same font name more than
once.

Listing reference: We will save the application at this stage as
!Fuel14a.

Specific example
The Examples folder in the Dr Wimp package contains the application
!PrintTest which shows in further detail how points in this chapter can
be implemented in practice.

14. Printing

157

Error reporting whilst printing
It is a fact of life - rather than any fault of Dr Wimp - that once your
program invokes the printing routines (i.e. here, once PROCwimp_print
is called) you often have difficulty in getting any sensible error reporting if
something goes wrong.

This can make it unusually time-consuming to develop a successful
sequence if you make even the smallest of errors e.g. a typo in a variable
name. The best you are likely to get is the message “Print job
doesn’t exist at Line xxxx” where xxxx is the line carrying the
error trap rather than the line where the problem is occurring.

You cannot reliably use the old standby of displaying variable values.
Possible worse results are a freeze up or quitting without any message.

In these circumstances, the following are offered as possible help:

- use VDU7 to check that certain stages have been reached.

- report variable values to a file instead (BPUTting them as strings to
make them easy to read in the subsequently displayed file).

- send the results of a TRACE action to a file, using TRACE ON/
TRACE TO <file$>/.../TRACE CLOSE/TRACE OFF
sequence. This is usually excellent for showing the line that
caused the jump to the error trap, but note that if your program
calls a library then it is sensible to number your program and
library lines so that - temporarily at least - they do not overlap.
This is because the TRACE action will faithfully report line
numbers in the library if necessary and you may waste time
looking in the wrong place.

14. Printing

158

14. Printing

159

15. DrWimp library version

We have virtually finished the programming of the tutorial application. All
that remains is a sensible housekeeping step.

The Dr Wimp package - like most software - is progressively upgraded
from time to time, and you will be well aware by now that the !RunImage
program and the DrWimp library used to develop it are an inseparable pair.

This means that an application produced with Version X of the DrWimp
library may not work with Version Y of the DrWimp library and it is
therefore vital to ensure that the correct version of the DrWimp library is
used with an application into the future.

If you use !Linker (see Chapter 16) you may feel that this will bypass the
matter, but this will only be the case as long as you do not want to amend
the application later.

It is therefore sensible to keep a copy of each DrWimp library version that
you use. If you adopt this philosophy - don’t forget to lock each one and hold it in
an easily identifiable and unique directory e.g. DW365, DW380 etc. It is so easy to
overwrite versions when they have the same file name!

An alternative is religiously to modify each existing application as each
new Dr Wimp version is issued. The process is usually very simple and is
always described in detail in the supplied documentation (by the
Upgrading file in the Documents directory). But it has to be said that
modifying finished applications in this way for no functionality gain
requires unusual discipline! It is probably best left until you decide that
you need to change/improve the program in some way. By and large, it is
then sensible to upgrade to the latest Dr Wimp version at the same time.

15. DrWimp library version

160

Of course, if you are starting a new application then it is always best to
use the latest version of Dr Wimp. (Remember that the utility !Fabricate,
which you will probably use when starting the development of a new application -
see Appendix 6 - is also matched to a specific DrWimp library version.)

Back to the tutorial …
The final step of our tutorial is therefore a practical step to alert us should
a mix-up of versions occur.

Dr Wimp has a wimp-function which returns the particular library version
number. It is FNwimp_libversion, which returns the library version
number times 100.

We can therefore add the following routine:

80 Library%=3.80*100
420 IF Fnwimp_libversion<>Library% THEN

PROCwimp_error(appname$,“Wrong ‘DrWimp’
Library Version! It needs to be Version
”+STR$(Library%),1,1):END

If you are not using DrWimp Library Version 3.80 you would need to
change Line 80 accordingly.

Listing reference: Our tutorial programming is now complete,
although there are still some non-programming finishing
options to cover. We will save the application at this stage as
!Fuel15a. (If you look at the !RunImage listing you will find
several explanatory REM statements which, to save space, were not
shown in the listing extracts in the previous chapters. In most cases
they are aide-memoires to the more detailed descriptions in the book.)

15. DrWimp library version

161

16. Post-programming utilities

The Dr Wimp package comes with a set of very useful utility applications
for neatly finishing things off after the programming has been completed.
They are mainly aimed at reducing the memory needs of the completed
application but they also provide a very good means of protecting your
coding from other’s eyes - if you have a need to do that. (But don’t forget
that these utilities are optional: your application will work quite happily without
using them.)

They are:

!Linker (Freeware)
!StrongBS (Freeware by Mohsen Alshayef)
!MakeApp2 (Freeware by Dick Alstein)
!Crunch (Freeware by Bernard Jungen)

and they are usually used one after the other in the sequence given (for
programs using a library, anyway).

Program size
Before looking at these facilities in more detail, we need to comment on
program size in general and - if we are going to reduce the size - it would
also be as well to establish exactly what we are starting from.

16. Post-programming utilities

162

Running space and WimpSlot
For an application to run successfully, it needs RAM space to:

- hold the !RunImage;

- hold any libraries, plus the variables, arrays, parameter blocks,
window definitions, workspace, etc. created during the program
run.

For the purposes of this book we will call the first item above the “static
run space” and the second the “dynamic run space”.

The WimpSlot allocated to the application is the amount of RAM set
aside for running it and therefore needs to be enough to hold both the
static run and dynamic run spaces.

It is important to remember that, if we make changes that reduce the static
run and/or dynamic run spaces, we will not get the advantage of the
reductions unless the WimpSlot value is reduced correspondingly after
the changes have been made. So, adjusting the WimpSlot value is the
very last item of action to take.

Storage size
As a separate issue, there is also the disc (or other medium) storage space
to consider - which needs to be enough to include all the ‘application
resources’ such as the !Boot, !Run, sprite and window template files, etc.
- as well as the !RunImage program itself and any libraries.

Window template statistics
Generally speaking, for given functionality, we can’t do a lot about the
‘dynamic space’ directly, although we have one piece of housekeeping yet
to do which can affect that.

The !TemplEd utility (see Appendix 7) has a ‘Statistics’ option available
from its iconbar menu which displays the memory needs of any window
or template file.

If you load the Templates file from !Fuel15a into !TemplEd and
choose this option you will get the following window.

16. Post-programming utilities

163

For our current purposes, it is the ‘Largest definition’ (1440 bytes) which
is of interest.

If you return to Line 170 of our tutorial program you will see:

170 task%=FNwimp_initialise(appname$,7000,300,0)

and you may recall (from way back in Chapter 4) that the second
parameter is set to the memory space needed to hold the window
definition. This is still currently set to 7000 - which is the initial value
assigned in !Fuel4a (and is also the default value set by !Fabricate
when you use that).

Clearly, the statistics table shows that we do not need that amount of space
set aside. Rather, a value of, say, 1500 would be adequate to cater for the
1440 bytes shown in the table.

To effect this, we change Line 170 to:

170 task%=FNwimp_initialise(appname$,1500,300,0)

and this saves 5500 bytes of dynamic run space directly. (But always check
that the program runs OK after such a change. Note the error which occurs if you
reduce the value below the 1440.)

16. Post-programming utilities

164

Our final change is to copy the DrWimp library back into the application
directory - the place where it would normally sit - and adjust Line 50
accordingly to:

50 LIBRARY “<Fuel$Dir>.DrWimp”

Listing reference: The program is now, in fact, the true ‘final
version’ of the tutorial application, as far as any further
reference to the !RunImage listing is concerned. We will
therefore save the application at this stage as !Fuel16a.

It is fully in the starting state for the use of the ‘post-
programming finishing facilities’ - after which it will not be in a
state suitable for reference to the listing.

Starting point values
There is nothing more we can do directly at the moment to reduce the
dynamic run space further.

However, we can do a great deal about the static run space directly and,
through this, also reduce the dynamic run space indirectly- as well as the
disc storage space.

To check where we are starting from though, we can carry out the
following routine:

- Add the following temporary line to the !RunImage:

250 VDU4:PRINT TOP-PAGE;“ ”;END-TOP:VDU5

- Save and run the application and Quit immediately.

You will get a task window display showing the values 56274 and 145190.
These are the static run and dynamic run spaces respectively. (Don’t worry
if your values are not exactly the same, but they ought to be close to these.)

16. Post-programming utilities

165

PAGE is the memory location in the user RAM of the start of the program.
TOP is the memory value of its end. So, TOP-PAGE gives the program size
i.e. the static run space.

END is the highest memory location of the libraries, variables, arrays, etc.
loaded/created during the program run. They are automatically placed
immediately above the program space, so:

END-TOP

gives the dynamic run space.

As we Quit without doing anything, the value returned shows the dynamic
run space used by the DrWimp library plus the initialisation steps only.

(Try it again by Quitting after exercising the program a little - and you will find
that the second value is higher - because some more variables, arrays, etc. have
now been created.)

Now use ‘Count’, via the Filer menu, to look at the size of the disc space
used to store the !RunImage and DrWimp files of the application.

At this stage, the static run space of the program - as defined above - will
be the same as the disc space used for the !RunImage file i.e. 56274
bytes.

The DrWimp library size, as counted, is 130459 bytes - so the rest of the
dynamic run space is the space taken up by the variables, arrays, etc. set
up during initialisation i.e. 145190-130459=14731 bytes.

So, our starting position - using rounded values - is as follows:

1) !RunImage length = 56kbytes

2) DrWimp library length = 130kbytes

3) Initial variables, arrays, etc. = 15kbytes

4) Static run space (as item 1) = 56kbytes

5) Dynamic run space (2+3) = 145kbytes

6) Min. WimpSlot needs (4+5) = 201kbytes

7) Disc storage space (see below) = 195kbytes

16. Post-programming utilities

166

Our current WimpSlot size of 256kbytes therefore nicely leaves a margin
for the extra dynamic run space that will be needed when the program
features are exercised.

At this stage, the disc storage space for the whole application is the static
run space plus the size of the DrWimp library, !Run and !Boot files plus
the sprites, templates and data files. The counted value is 194155 bytes i.e.
say, 195kbytes, as shown.

!Linker
As we said earlier !Linker is the first of the special post-programming
facilities to use.

What it does is to go through the !RunImage of the specific application
and the DrWimp library and identifies which wimp-functions have not
been used. It then adds all the rest to the !RunImage listing to produce a
new composite, stand-alone program. As this does not now need the
DrWimp library, the initial library call can also be deleted. This new
program can then become the new !RunImage and the DrWimp library
file can be deleted from the application.

The operation is simple. First, move the !RunImage somewhere away
from its application directory. Then install !Linker on the iconbar and
press <select> to bring up a window with two file-drag destination
boxes. Drag the !RunImage to one and the DrWimp library to the other.
Press “Link” and a Save box appears with a default Basic icon named
!RunImage.

You should drag this to your original application directory i.e. the one
from which the original !RunImage came. Then sit back for a few
moments and follow the action via the messages which appear. (If you
merely copy your original !RunImage elsewhere - rather than move it - you will
be prevented from dragging the save box icon for the new !RunImage to the
application file and will have to start again. This is a good safeguard to prevent
loss of the original !RunImage. Alternatively, you can drag the save box icon to
some other directory and do the changing over later. However, the above
suggested sequence is safer.)

After using !Linker, run the application and…… you will get an error!

16. Post-programming utilities

167

It points to Line 420 which was our protection against the wrong DrWimp
library version. This step is clearly now inappropriate and the !Linker
process has quite sensibly removed the wimp-function. So we need to
delete (or REM) the contents of Line 420 (and, if you wish, Line 80 - and
the REM at Line 30 has been changed to remind us for any future
development.). In doing this you will note that !Linker has already
deleted the LIBRARY call at Line 50.

The DrWimp library itself can now also be deleted from this version of the
application.

Listing reference: We will save the ‘linked’ application at this
stage as !Fuel16b - noting that the temporary Line 250 is still
in place.

The application will now run properly and you can therefore repeat the
earlier process of checking the various sizes. You will find the new results
are:

!RunImage length = 114kbytes

DrWimp length n/a

Initial variables, arrays etc. = 15kbytes

Static run space = 114kbytes

Dynamic run space = 15kbytes

Minimum WimpSlot needs = 129kbytes

Disc storage space = 121kbytes

Note that the static run space has increased considerably, because parts of
the DrWimp library have been added permanently to the !RunImage files.
However, the dynamic run space needs are reduced by an even greater
amount because all of the original DrWimp library has now been removed.

16. Post-programming utilities

168

The net result is an overall reduction of 72kbytes in both the WimpSlot
and disc space needs, which represents those parts of the DrWimp library
that we are not using in this particular application.

(That’s over half the DrWimp code - there’s still a lot for this book to cover!)

!StrongBS
This is a Basic program compactor - which means that it may well be
impossible to modify the program in its compacted state.

So, before taking the next step, copy !Fuel16b as !Fuel16c and change
Line 120 accordingly. (It doesn’t matter about the header REMs because
they will be eliminated by the process anyway.) Also, if you want to check
the sizes detail, make sure the temporary Line 250 is still in place.

Having taken these preliminary steps, the procedure is again
straightforward. Load StrongBS onto the iconbar and press <select>
over it to bring up the operating window.

Now press <menu> over this window; move across Mode and select
Full2001.

The !RunImage file is now dragged to this window and “Squash”
selected.

After completion, drag the Basic file icon (called !RunImageX if you
have left things untouched) to the !Fuel16c application directory. Delete
the original unsquashed !RunImage and rename !RunImageX as the new
!RunImage.

Listing reference: We will save the ‘linked and squashed’
application at this stage as !Fuel16c - noting that the
temporary Line 250 is still in place.

16. Post-programming utilities

169

Check that the application runs OK and then repeat the checks for the
sizes. The figures should be:

!RunImage length = 35kbytes

DrWimp length n/a

Initial variables, arrays etc. = 13kbytes

Static run space = 35kbytes

Dynamic run space = 13kbytes

Minimum WimpSlot needs = 48kbytes

Disc storage space = 42kbytes

This step reduces the static run space considerably - mainly due to the
elimination of REMs and the long variable names in the !RunImage. But
note that the dynamic run space is also reduced a little - due to shorter
variable/array names.

(Remember that it is unwise - and sometimes impossible - to modify a
compacted Basic program. If modifications are needed you need to modify
the original program and then run it through !StrongBS again. So always
keep a copy of the original!)

!MakeApp2
This utility converts a Basic program into ‘absolute code’ - which
effectively means that it ceases to be a Basic program and becomes a
sequence of bytes which look like gibberish in a text editor and will not
operate as a program without help. So the !MakeApp2 conversion process
gives this help by adding a special header to the file which automatically
ensures that, when run in the usual way, Basic mode is entered and the
listing restored - and that the Basic environment is quit after the program
ends.

The consequence is that the use of !MakeApp2 on its own actually
increases the static (and dynamic) size very slightly. Its main advantage on
its own is that it provides an effective security facility by making the
!RunImage file totally incomprehensible.

16. Post-programming utilities

170

To see it in action, first copy !Fuel16c as !Fuel16d (and change the
sprite name, as usual). Then load !MakeApp2 and simply drag the
!RunImage file to the iconbar icon. The resulting Save box will show the
standard Wimp App directory icon (with a default name of “Ab”) which
can be dragged to the !Fuel16d application directory and renamed to
replace the !RunImage from whence it came. The new sizes will be very
slightly larger than before but when rounded will be:

!RunImage length = 35kbytes

DrWimp length n/a

Initial variables, arrays etc. = 13kbytes

Static run space = 35kbytes

Dynamic run space = 13kbytes

Minimum WimpSlot needs = 48kbytes

Disc storage space = 43kbytes

!Crunch
However, the second advantage of using !MakeApp2 is that the resulting
absolute file (unlike a Basic file) can then be ‘crunched’ further, by
!Crunch, to reduce the disc storage space significantly - but not the
actual running needs.

The process is simple but not quite the same as before. After loading
!Crunch onto the iconbar and dragging the absolute version of
!RunImage to it, a Save box with a blank file icon (with default name
“Crunched”) appears. This needs to be dragged to the application’s
directory and the crunching then starts. On completion the file icon
changes to the standard Wimp App directory icon.

16. Post-programming utilities

171

The final sizes are then:

!RunImage length = 20kbytes

DrWimp length n/a

Initial variables, arrays etc. = 13kbytes

Static run space = 35kbytes

Dynamic run space = 13kbytes

Minimum WimpSlot needs = 48kbytes

Disc storage space = 27kbytes

We therefore end up with a file which needs less space to store on disc
than it’s static space when loaded for running.

Revisit WimpSlot
Having carried out all the above processes, it is time to have a final look at
the WimpSlot.

Our final result indicates a minimum WimpSlot need of 48kbytes, but
remember that this figure is not quite sufficient because it only took
account of the dynamic run space needs of the initialisation process of the
program. A somewhat larger value will therefore be needed in practice.

A sensible way to proceed (with the temporary contents of Line 250 in
place - but now inextricably buried in the crunched version!) is to run the
completed application through its range of user options before quitting.
This will give a larger value, to which a small margin should be added just
in case. The WimpSlot value in the !Run file can then be changed to that.

Using this process a value of 56k appears to be a good WimpSlot choice
for our final version.

Trial and error is then the only way to check whether this value is enough
for all circumstances, or whether it can be trimmed further.

The chosen WimpSlot value is 30% of the original need (i.e. compared
with !Fuel16a) which is a very worthwhile reduction.

16. Post-programming utilities

172

Listing reference: We will save this fully processed application
as !Fuel16d - noting that the temporary Line 250 is still in
place.

However, if you have followed the above sequence precisely as
described, !Fuel16d, when run, will show “V16c” on the icon
bar, because we could not get at the original Line 120 after
squashing the program.

Therefore, to add final polish:

i) replace the !RunImage of the above !Fuel16d with a copy of
the !RunImage from !Fuel16b;

ii) in this !RunImage, change Line 120 to “16d” and delete (or
REM) the temporary entry in Line 250;

iii) then repeat the use of !StrongBS, !MakeApp and !Crunch.

Listing reference: This new !Fuel16d is the fully finished
version and matches the version on the supplied disc.

Summary
The following table shows the results of the various post-programming
processing stages together, for easier comparison.

Naturally, the reductions achieved depend somewhat on programming
style and in this tutorial exercise it is inevitable that more REMs were used
than you might “in the privacy of your own home”. Nonetheless, it is
easily seen that the post-programming facilities offered in the Dr Wimp
package are both very simple to use and produce very well worthwhile
results, particularly for those who wish to distribute programs.

As the table shows, !Linker and !StrongBS produce the main
reductions and !MakeApp is best regarded as a good security step which
incidentally opens the door to further disc-space saving.

16. Post-programming utilities

173

Don’t forget that a great deal of protection (and size reduction) is provided
merely by using !StrongBS on its own. It is very difficult to follow a
compacted Basic listing - and often the program will not save if
modifications are attempted in this form.

'static run' 'dynamic run' Disc space

At start

!Linker

!StrongBS

!MakeApp

!Crunch

56 145 201

114 15

35 13

35 13

35 13

195

129 (64%) 121 (62%)

48 (24%) 42 (22%)

48 (24%)

48 (24%)

43 (22%)

27 (14%)

Progressive effect of post-programming size reductions using Dr Wimp utilities

WimpSlot

Our tutorial exercise is now finished. The following chapters
will cover many more features of the Dr Wimp package as
separate topics although some references are still made to
the tutorial program to assist understanding. As indicated
earlier, !Fuel16a is the most useful reference version as it is
the complete version just prior to post-programming
processing.

16. Post-programming utilities

174

16. Post-programming utilities

175

17. More on menus

In our tutorial, using a simple iconbar menu/sub-menu ‘tree’, we showed
how Dr Wimp firstly creates the definitions of menus and sub-menus
separately - and then, subsequently, causes them to be displayed as
required.

Menu manipulation is very important to Wimp programs and so Dr Wimp
has a comprehensive range of facilities to offer.

Menu definition/creation
Three methods of menu/sub-menu creation are provided:

FNwimp_createmenu - already used in the tutorial
application.

FNwimp_createmenuarray
FNwimp_createmessagemenu

One of the shortcomings of FNwimp_createmenu is that the items are
defined by the ‘slash separated’ string, which is therefore limited to the
maximum length of a Basic string e.g. 255 characters.

FNwimp_createmenuarray and FNwimp_createmessagemenu both
avoid this problem.

FNwimp_createmenuarray
Firstly, a string array needs to be DIMmed: let’s call it array$(). The
elements of this array are then used to hold the required menu items.

The string in the first element - array$(0) - is used for the title of the
menu.

17. More on menus

176

The next element - array$(1) - will hold the top item of the menu
(item 1) and so on. The element after the last menu item must contain
the string “END” - in capitals but without the quotes.

This means that the array is normally DIMmed with a number one higher
than the maximum number of menu items to be used. e.g. if there are to be
6 menu items, then DIM array$(7) would be used (8 elements, from 0-
7). On initial creation, this array would have the menu title put in
array$(0) - and array$(7) would be assigned the string “END”. The
elements 1 to 6 would be filled with the required menu item strings, in
order from the top downwards.

When the array is complete, a call to

FNwimp_createmenuarray(array$(),size%)

creates the required menu and returns its handle.

The first parameter passed is the name of the array and the second is the
required maximum size of the array (which can be larger than the size of
array$(), but would normally be one less, as indicated above).

Once the menu has been created the array is not needed any longer and so
can be reused for creating/recreating other menus for instance.

FNwimp_createmessagemenu
This method offers even greater flexibility and uses the RISC OS
‘Messages files’ procedure (not to be confused with the ‘Wimp Messaging
system’!).

Message files are simply text files which contain lists of text items in a
simple specified format. They are very commonly used in applications to
hold the text of error messages etc. Chapter 26 (and the Dr Wimp Manual)
contains fuller details on Messages.

The message file format requires each listed item of text to be preceded by
a ‘token’ (or ‘tag’) such as:

#This is a comment line (ignored).
ibarT:Fuel
ibar1:Info
ibar2:New Car
ibar3:Quit

17. More on menus

177

In this case the token is “ibar” and you can see that there are four items
using that prefix - together with another character and separated from the
item text by a colon. (A single Message file might have many more lists, each
with their own unique token.)

For a menu, the first item is preceded by “ibarT” and this signifies that the
text is the title for the menu. The ordinary menu items then follow with the
prefix “ibar1”, “ibar2” etc. representing the required menu item text in
order from top to bottom. It is very important that this order is strictly
kept.

Once this Message file is in place the procedure is firstly to ‘initiate’ the
Messages file with:

messagefilehandle%=FNwimp_initmessages(filepath$)

This also sets up some special memory blocks for later use.

The returned handle is then used to create a menu with the call:

menuhandle%=FNwimp_createmessagemenu
(messagefilehandle%,“ibar”,0)

The specific token string is needed in the second parameter to ensure that
the correct list is used from the Message file - which, as had been said,
may hold more than one list.

As before, the final parameter of 0 means that the maximum size of the
menu will be the number of items initially used. But it can be set instead
to a required higher number if the menu is to be enlarged later in the
program.

17. More on menus

178

Menu re-creation
Once a menu/sub-menu has been created by any one of the creation
methods it can be completely re-created - within the maximum size
defined at creation - using any one of the following:

PROCwimp_recreatemenu
PROCwimp_recreatemenuarray
PROCwimprecreatemessagemenu

PROCwimp_recreatemenu
This re-builds an existing menu using a ‘slash separated’ string. The call is
simply:

PROCwimp_recreatemenu(menu%,menu$)

where menu% is the existing menu handle and menu$ is the ‘slash
separated’ string.

PROCwimp_recreatemenuarray
The call this time is:

PROCwimp_recreatemenuarray(menu%,array$())

The array is simply filled with the new title/item text exactly as if it was
being used to create a new menu (see earlier).

The only important thing to remember is that “END” must be put in the
array element after the last item of the intended new menu.

PROCwimp_recreatemessagemenu
The call this time is:

PROCwimp_recreatemessagemenu(menu%,
messagefilehandle%,token$,title$)

This time we have four parameters. Again, menu% is the existing menu
handle.

messagefilehandle% is the handle of the Message file to be used for
the re-creation - and must have been previously ‘initialised’ as described
in the creation process. token$ is the token of the menu item text list to
be used from this new Messages file.

17. More on menus

179

title$ is an added feature: if it is set to a null string then then the title
defined in the new Message file will be used - but if it is not a null string
then title$ will override whatever title is in the Messages file.

One of the uses of menu creation/re-creation using Message files is to
prepare menus dynamically from user data files - whose number and/or
content are, of course, unknown. For instance, it is easy to read a user’s
directory to count the number of data files; extract their leafhames into a
Messages file; from which a menu of data files can be presented. The
process can then be repeated freely at any time during the application run
to re-create the menu with the up-to-date number of data files.

Further menu manipulation
Once a menu/submenu has been created there are a number of
manipulations that can be applied to individual items or the title text. For
instance, there are wimp-functions to:

Enable/disable menu items

Add/remove an individual item

Change item or title text

Add/remove a menu tick

Add/remove a ‘dotted line’

Change the colour of a menu item

Change an item to ‘writable’

There are also wimp-functions to find the current state of most of the
above features.

The only disadvantage is that these features have to be re-applied if any of
the menu re-creation methods is used.

17. More on menus

180

Menu position
If we use FNuser_menu to determine the display of a menu it will be
displayed according to the Wimp’s normal rules - which we have already
seen in our tutorial.

However, Dr Wimp also offers further menu display options by the use of:

PROCwimp_menupopup(menu%,pos%,x%,y%)

where menu% is the handle of the menu (or, indeed, a window) to be
displayed and pos%, x% and y% determine the displayed position as
described below.

If pos%=0 then the menu is displayed with its top left corner at
screen OS coordinates x%/y%.

If pos%=1 then the menu is displayed as if it were an iconbar menu
with its left edge at x% i.e. its bottom edge will always be 96 OS
units above the bottom of the screen. (The y% value will be ignored
but must be included.)

If pos%=2 then the menu will be centred on the screen. (The x% & y%
values will be ignored but must be included.)

If pos%=3 then the menu is displayed slightly to the right of and
slightly above the pointer position (optimised to butt onto right
edge of the ‘ptr_menu’ shape). (The x% & y% values will be ignored
but must be included.)

If pos%=4 then the menu is displayed with its left edge butting
against the right edge of the icon over which the mouse is
clicked. (Designed to be used with ‘pop-up menu icons’.) (The x% &
y% values will be ignored but must be included.)

Calling this at anytime (e.g. from a <select> or <adjust> mouse-click
over a specific icon) will bring up (‘pop up’) the menu (or window)
immediately. It will also act entirely like a menu - that is, the menu (or
window) will close again if the mouse is clicked anywhere else on the
screen.

17. More on menus

181

PROCuser_overmenuarrow
We have mentioned this user-function but not yet introduced it. It provides
yet another means of changing menus dynamically.

The empty (default) function definition is:

DEF PROCuser_overmenuarrow(RETURN
nextsubmenu%,parentmenuitem%,x%,y%)

ENDPROC

This user-function is automatically called whenever the user ‘moves over’
a menu arrow leading to a sub-menu.

When called (by the DrWimp library, as usual) nextsubmenu% holds the
handle of the sub-menu about to be displayed and parentmenuitem%
holds the menu item number to which the submenu is ‘attached’. x% and
y% are the (screen OS) pointer position coordinates when over the
arrowhead.

Note the RETURN with the first parameter: this implies that the value of
nextsubmenu% can be changed by the programmer within the coding of
this user-function definition.

17. More on menus

182

Font menus
From applications such as !Draw you will be familiar with the use of a
menu to show the list of outline fonts currently available to you on your
particular machine.

In fact, as you will know, a font menu is invariably a small menu ‘tree’
with the sub-menus offering a choice of variations within each main font
family, e.g. “Trinity” on the main menu, with its variations “Bold”,
“Bold.Italic”, “Medium” and “Medium.Italic” on a sub-menu.

Dr Wimp allows you to provide the same facility in your own applications
- either as a separate menu or with the font menu starting as a sub-menu to
any other menu/sub-menu.

Creation of a font menu is effected by:

FNwimp_createfontmenu (no parameters)

and this returns a handle which you can use as normal to display the menu
or attach it as a sub-menu to another menu/sub-menu item.

Note that you do not have to worry about specifying a maximum size for a
font menu.

If you want to recreate an existing font menu you need to use:

FNwimp_recreatefontmenu(fontmenu%)

and in practice it would be normal to use this prior to each opening of the
font menu in case the user has altered his/her fonts since the menu was last
opened (quite a normal occurrence to be catered for).

The only restrictions on using font menus is that you cannot manipulate
them with, for example, the wimp-functions for enabling/disabling,
adding/removing items, etc. - but Dr Wimp will give you a ‘non-fatal’
warning you if you attempt these.

17. More on menus

183

Selections from a font menu
As with all menus, when we make a selection from a font menu the
following user-function comes into play:

PROCuser_menuselection(menu%,item%,font$)

The only difference is that the second parameter, item%, is now not used
(and is automatically set to 0 by Dr Wimp) and the third parameter
(instead of being set to a null string) now gives the selected font as a full
‘period separated’ font string e.g.:

“Trinity.Medium.Italic”

It is worth noting that although there is, at any one time, really only one
font menu it is sometimes necessary to create more than one within the
same application i.e. each with different menu handles. A reason for this
would be to ensure that selections from different font menus lead to
different actions in the application.

Finally, the wimp-function:

PROCwimp_puticonfont(window%,icon%,fonthandle%)

is provided specifically to allow the font of text within an icon to be
changed - as long as its icon definition specifies that an outline font is
used. (This will automatically mean that the icon will also be ‘indirected’.)

Listings of typical font menu routines are contained in the Dr Wimp
Manual.

17. More on menus

184

17. More on menus

185

18. Saving and loading data

Saving data
In the tutorial application we saved the car fuel data directly to a
predetermined directory with an automatically constructed filename.

However, many applications would normally use the standard Save
window - shown below in a text file form.

This window has three icons, the draggable file icon, the writable icon and
the OK button. (These are given the handles drag%, write% and ok%
respectively in the standard Dr Wimp programming - see below.)

The writable icon needs to be indirected and it is best if the draggable icon
is also indirected.

Dr Wimp provides a group of three functions to enable this standard Save
window to be harnessed painlessly (and without any worry about which
icon button types to use). They are:

18. Saving and loading data

186

FNuser_savefiletype(window%)
PROCuser_saveicon(window%,RETURN drag%,RETURN

write%, RETURN ok%)
FNuser_savedata(path$,window%)

Your program must first have the above Save window loaded - and we will
assume that its handle is Save%. (A copy is included in the Dr Wimp
package in Template4 of the Tutorial directory. Its icons are already
of the required button types.)

In addition you will need to cause the window to be opened when needed,
from a mouse click and/or a menu selection, using the normal Dr Wimp
methods covered already. (Don’t forget that a window can be attached as a
‘sub-menu’ to a menu item in exactly the same way as a real sub-menu.
Just use a window handle instead of a menu handle in
PROCwimp_attachsubmenu.)

Then, the first programming step is to decide the filetype of the data to be
saved. Let’s assume that it is a textfile and hence the filetype &FFF is
appropriate. We simply make changes to DEF FNuser_savefiletype
on the lines of the following:

DEF FNuser_savefiletype(window%)
Type$=“”
CASE window% OF

WHEN Save%
Type$=“FFF”

ENDCASE
=Type$

Once this has been done, the filetyping of the save action (see below) will
be taken care of by Dr Wimp automatically.

The particular routine above allows for easy addition of further save
windows, but an IF ... THEN statement could have been used equally
well.

The draggable file icon needs to match this chosen filetype, so
PROCwimp_puticontext can be used to change the sprite displayed in
the icon if need be.

18. Saving and loading data

187

Next, it is necessary to check the icon numbers used for the three Save
window icons. Dr Wimp will assume that the drag/writable/OK icons are
numbered 0, 1 and 2 respectively unless you use PROCuser_saveicon to
tell it otherwise.

If, in your case, the corresponding icon numbers are 6, 17 and 5, then a
typical usage might be:

DEF PROCuser_saveicon(window%,RETURN drag%,
RETURN write%,RETURN ok%)

IF window%=Save% THEN
drag%=6
write%=17
ok%=5

ENDIF
ENDPROC

All is now ready to take the actual saving action, which is put inside
FNuser_savedata(path$,window%).

This user-function is called from DrWimp when the draggable save icon is
dragged to a directory window or the OK button is pressed (if a valid path
has been put into the writable icon). A typical sequence - for a text file -
might be:

DEF FNuser_savedata(path$,window%)
LOCAL ERROR
ON ERROR LOCAL =2

IF window%=Save% THEN
file!=OPENOUT(path$)
BPUT#file%,“This is the Heading text”
BPUT#.file%,“First text line.”
etc.
etc.
CLOSE#file%
PROCwimp_menuclose

ENDIF

=1

18. Saving and loading data

188

There is a very important point in the above routine which is easy to miss -
and that is the return value of 1. (Note that the default return is 0 i.e. in the
‘empty’ state.)

The return value of 1 tells Dr Wimp that you have actually taken some
saving action and therefore want the automatic filetyping etc. to take
place.

The above sequence will cause FNuser_savefiletype to return a 1, or
2 if an error occurs.

There is also a use for returning 0 - which, in general, is when no save
action is taken. For instance, if the file we wished to save already exists
we might wish to give the user the option to overwrite it or cancel the save
action. If cancel was chosen then we would not start the saving action and
would return 0 instead.

So a revised sequence might then be:

DEF FNuser_savedata(path$,window%)
LOCAL ERROR
ON ERROR LOCAL =2

Used%=0
IF window%=Save% THEN

Choice%=TRUE
file%=OPENIN(path$)
IF file%>0 THEN

CLOSE#file%
Choice%=FNwimp_errorchoice(app$,“This

file already exists. Press ‘OK’ to
overwrite it.”,2)

ENDIF

IF Choice%=TRUE THEN
file%=OPENOUT(path$)
BPUT#file%,“This is the Heading text”
BPUT#.file%,“First text line.”
etc.
etc.
CLOSE#file%
Used%=1

ENDIF
ENDIF
=Used%

18. Saving and loading data

189

If required, a default file path could also be placed in the writable icon of
the Save window using PROCwimp_puticontext.

It is therefore very easy to handle Save windows and there is no reason
why an application cannot have several of them and/or several different
saved file types and contents. In the Dr Wimp Examples directory, the
application !Saver shows how easy it is to change the filetype and the
sprite in the draggable icon - to achieve, for instance, multiple save
options.

Loading data
Complementary to the above, Dr Wimp provides facilities to help with
loading data from existing files into your application - for example, so that
data can be extracted from a file for manipulation by the application.

Only one user-function is needed for this:

FNuserloaddata(path$,window%,icon%,ftype$,
workx%,worky%)

and this is called from DrWimp whenever a file (or directory or
application) is dropped onto a window of your application - or even when
it is just ‘double-clicked’.

The full path of the file, its filetype, the window/icon and position it was
dropped into are passed to you by DrWimp in the 6 parameters.

You simply have to fill the DEF FN with the necessary loading
instructions, using any of the passed parameters you wish.

18. Saving and loading data

190

If we follow on from the preceding saving example, a typical loading
sequence for a text file might be:

DEF FNuser_loaddata(path$,window%,
icon%,ftype$,workx%,worky%)

Used%=0
IF ftype$=“FFF” THEN

file%=OPENIN(path$)
N%=0
REPEAT

N%+=1
Array$(N%)=GET$#file%

UNTIL EOF#file%
CLOSE#file%
Used%=1

ENDIF

=Used%

Clearly, the array to hold the file data would need to be set up previously,
preferably in PROCuser_initialise.

When a file is ‘double-clicked’, the window% and icon% parameters are
set by Dr Wimp to 0 and -1 respectively - and the final two parameters are
both set to -1. Thus, in this case, the contents of path$ and ftype$ will
be of main interest.

Dr Wimp also provides wimp-functions for loading image files
(sprites, drawfiles and JPEG files) into memory, usually prior to their
display by an application. This is covered in the next chapter.

Specific examples
The Examples folder in the Dr Wimp package contains the applications
!Blocks, !Dynamic and !Saver which show in detail how points in this
chapter are implemented in practice.

18. Saving and loading data

191

19. Handling image files

There are many circumstances where you want your application to display
and/or print an image from a sprite-file, a drawfile or a JPEG file - and
Dr Wimp has three broadly similar suites of wimp-functions to help with
this.

With all three types of image a common feature of the RISCOS process is
that the the file contents need to be copied into RAM before display and/or
printing can take place. (This is not strictly true for JPEGs, where an option
exists to display - but not print - a JPEG directly from file. Dr Wimp also offers
this option.)

We have already met this need to load the image into RAM in a
slightly different way in our tutorial. You’ll recall that it was necessary
to load the !Sprites/!Sprites22 files into a special part of RAM
called the ‘Wimp sprite pool’ before, say, the application icon would
appear correctly in a Filer window. This was done there with the Star
Command *IconSprites in the application’s !Boot and !Run files.
Generally speaking you should only use the Wimp sprite pool for
sprites which are intended for use by any application - particularly by
the Filer.)

Before proceeding with the detail it is also worth remembering that a
single sprite-file can hold more than one sprite image, each of which can
be extracted independently - whereas drawfiles and JPEG files hold only
one image per file.

19. Handling image files

192

Common steps
Although the process is simple, it is absolutely essential that the following
sequence is used with any image file:

1) Measure the size of the file(s) using a specific wimp-function;

2) Set aside a memory block of the corresponding size;

3) Load the image file(s) into that block.

It is important that only FNwimp_measurefile is used for Step l,
because it not only finds the size of a file but it also sets up a few extra
bytes used behind-the-scenes by Dr Wimp. These extra bytes are vital to
the correct working of the associated wimp-functions used for displaying/
printing the images.

For Step 2, the choice is between using DIM to set aside a block of
memory for holding the image(s), or to set up a Dynamic Area instead.
Chapter 26 (or the Dr Wimp Manual) covers the latter in more detail, but
we will be using only DIM in our sample listings below.

For Step 3, the appropriate wimp-functions are:

FNwimp_loadsprites(file$,address%)
FNwimp_loaddfile(file$,address%)
FNwimp_loadjpegfile(file$,address%)

All three operate in the same, unusual, way in that they are designed to
facilitate more than one file to be loaded into a memory block
contiguously. So they load the file file$ into a block of memory starting
at address% - but they return the address of the start of the next block of
memory.

An example will make this clear. Let’s assume you have three sprite-files
to load - with leafnames SpritesA, SpritesB and SpritesC. A typical
sequence would be:

19. Handling image files

193

Step 1

Size%=FNwimp_measurefile(“<App$Dir>. SpritesA”)
Size%+=FNwimp_measurefile(“<App$Dir>.SpritesB”)
Size%+=FNwimp_measurefile(“<App$Dir>.SpritesC”)

Note the += actions in the second and third lines: this ensures that
Size% ends up being large enough to cater for all three files.

Step 2

DIM SpriteArea% Size%

Step 3

A%=SpriteArea%
B%=FNwimp_loadsprites(“<App$Dir>.SpritesA”,A%)
C%=FNwimp_loadsprites(“<App$Dir>.SpritesB”,B%)
X%=FNwimp_loadsprites(“<App$Dir>.SpritesC”,C%)

The three sprite-files are loaded one after the other into the memory
block at SpriteArea% with their respective ‘sub-block’ areas
starting at A%, B% and C% - which are now the respective handles
of each sprite-file. (A% is the same as SpriteArea% and is only
used for consistency.)

Note that we have no use for the return from the third loading action
and so X% is a dummy value - and is actually the address of the
first byte after the end of the block which has been set aside.

If we had only one sprite-file to load then Step 1 would require just one
sizing action, and Step 3 just one loading action.

The procedure is exactly the same for drawfiles and JPEG files - but using
the corresponding loading wimp-function in Step 3.

With the files loaded into memory we can now simply refer to their
handles in the subsequent display/printing actions.

19. Handling image files

194

In all cases, display of an image on the screen means using
PROCuser_redraw, so don’t forget that the ‘auto redraw’ flag in the
window definition must be unset for the ‘redraw’ process to work. For
printing, either ‘redraw’ or ‘user’ printing can be used - as defined in
Chapter 14.

There are slight differences in the way the three types of image files are
handled for display/printing so we now need to look at each individually
in turn.

Displaying/printing sprites
For a sprite, the memory area into which we have loaded the sprite-file is
usually called a ‘user sprite area’ and so we will follow that nomenclature
here.

It is also worth remembering that a sprite is a bit-image format and not
tied to any ‘page’ format.

Dr Wimp offers two main wimp-functions for displaying sprites on the
screen, which also work for printing them. In both cases, the sprite to be
used must already be loaded into a user sprite area as described above.

As we have said, the unique point about a sprite-file is that it can hold
more than one sprite image. Consequently, in order to display a particular
sprite image we have to identify the user sprite area and the sprite name
within it.

You will see this reflected into the two wimp-functions:

PROCwimp_rendersprite(sprite$,sprite%,bx%,by%,
minx%,miny%,maxx%,maxy%,
xscale,yscale)

PROCwimp_renderwindowsprite(window%,sprite$,
sprite%,bx%,by%,minx%,miny%,maxx%,
maxy%,xscale,yscale)

19. Handling image files

195

For display (‘rendering’) both these wimp-functions are intended to be
used within PROCuser_redraw. For printing, either ‘redraw’ printing via
PROCuser_redraw or ‘user printing’ via PROCuser_print can be used.

The first wimp-function draws a sprite directly onto the screen and the
second draws it in a window. The only difference between the two
parameter lists is the addition of window% in the second case, so we need
only describe the list once.

The name of the particular sprite is entered as a string into sprite$ and
the handle of its user sprite area is placed in sprite%.

bx% and by% are the OS coordinates of the bottom left corner of the
required sprite position. In the first case they need to be in screen
coordinates, whilst in the second case they need to be in work area
coordinates. So the y-values will need to be negative in the second case.

minx%, miny%, maxx% and maxy% are the OS coordinates (in screen
coordinates in both cases) of the ‘clipping’ rectangle. The sprite will only
be drawn (and then in full) if any part of it lies within this clipping
rectangle. As the wimp-functions will be used within PROCuser_redraw
or PROCuser_print - both of which will hold the clipping rectangle
coordinates in their own parameters - these coordinates can simply be
transferred directly to our wimp-functions without worrying about them.

xscale and yscale are largely self-explanatory. Note that their values
are generally non-integer - values less than 1 reduce the displayed size and
values more than 1 increase it.

Printing sprites
Printing sprites is straightforward, using either the ‘redraw’ or ‘user’
method. It is simply a matter of calling

PROCwimp_rendersprite or PROCwimp_renderwindowsprite with
the bx% and by% values converted to ‘paper coordinates’ as described in
Chapter 14.

19. Handling image files

196

Sprites in the ‘Wimp pool’
Dr Wimp recognises that there will be occasions when you want to
display/print a sprite which is already known to be in the Wimp sprite
pool.

Accordingly, there is a pair of special wimp-functions for this
purpose. They are:

PROCwimp_renderpoolsprite(sprite$,bx%,by%,minx%,
miny%,maxx%,maxy%,xscale,yscale)

PROCwimp_renderwindowspoolsprite(window%,sprite$,
bx%,by%,minx%,miny%,maxx%,maxy%,
xscale,yscale)

As you can see, they are identical to their ‘user sprite area’ counterparts
except for the absence of the sprite area handle. So no further explanation
is needed - apart from the good news that, for obvious reasons, you can
use these calls without the need to go through the common measuring and
loading sequence.

Displaying/printing drawfiles
Although drawfiles contain only one image, they have the added
complication that they often contain text using outline fonts and they can
also include sprite and/or JPEG images. Further, a drawfile exists in
relation to the ‘page’ on which it is drawn.

Accordingly the Dr Wimp display/print options for drawfiles need to take
these into account and the wimp-functions hide an unusually large amount
of complication behind the scenes.

However, as usual, all this is hidden from the Dr Wimp user who only has
to remember to take one other very simple step during the common
preparatory file measuring and loading sequence and that is to make a
single call to PROCwimp_initdfiles. This sets up some special memory
blocks/arrays to handle most of the complications automatically. (You only
have to call it once irrespective of how many drawfiles are involved. And it
doesn’t matter whether the call is made before or after the measuring/loading
sequence - just as long as it is before attempting to display/print the drawfile.)

19. Handling image files

197

So, along with measuring the drawfile(s), setting up the memory block and
loading the file(s) into the block - using FNwimp_loaddfile this time
(which gives us a drawfile handle) - the single call:

PROCwimp_initdfiles

is made.

Following this, displaying drawfiles takes place using either of the
following wimp-functions, both of which use the drawfile handle (here
called dfile%) from the common loading sequence:

PROCwimp_render(dfile%,bx%,by%,minx%,miny%,
maxx%,maxy%,scalex,scaley,origin%)

PROCwimp_renderwindow(window%,dfile%,bx%,by%,
minx%,miny%,maxx%,maxy%,
scalex,scaley,origin%)

and you can see that, apart from the additional final parameter, they are
essentially the same as those for displaying/printing sprites.

The extra parameter origin% is set to either 0 or 1. If set to 0 the drawfile
is displayed with the bottom left corner of its ‘page’ at bx%/by% - and if
set to 1 it is displayed with the bottom left corner of the bounding box
surrounding all its ‘objects’ at bx%/by%. (In effect, you have the choice of
eliminating any white space below and to the left of the drawfile image on its
‘page’. The Dr Wimp manual contains a diagram which explains this in detail.)

Apart from this point the use of the wimp_functions follows that of the
sprite case.

19. Handling image files

198

Printing drawfiles
For printing drawfiles there is one extra aspect to take care of: the need to
‘declare’ any outline fonts that may be included in the drawfile, in case a
PostScript printer is being used.

This was mentioned initially in Chapter 14 where the role of
PROCuser_declarefonts in both ‘redraw’ and ‘user’ printing was
introduced.

When drawfiles are being printed we simply use:

PROCwimp_declaredfilefonts(dfile%)

within PROCuser_declarefonts - using the drawfile handle of the
drawfile involved.

It is always safest to use this font declaration process when printing
drawfiles - even if you are sure that the particular drawfile doesn’t contain
text. It will do no harm.

Text areas in drawfiles
Although ordinary text within a drawfile is rendered by the above wimp-
functions, Dr Wimp will not cope with any specialised ‘text areas’ i.e.
multi-line blocks of text in a drawfile - which are usually made by
dropping a text file into a frame within the drawfile page.

Dr Wimp will not throw an error in these cases - it will simply not render
such areas. Fortunately they are not a common feature.

However, Dr Wimp has very good facilities for plotting text directly to the
screen, as is covered in the next chapter……

19. Handling image files

199

Displaying/printing JPEGs
If you are using RISC OS Version 3.60 or higher then you will be able to
use Dr Wimp to display/print JPEG images.

The JPEG format is very popular, particularly for digital camera photo
images. It is a bit-image format and (unlike sprites) there is only one
image per file.

As with sprite-files and drawfiles you must carry out the standard
preparatory sequence to measure the file(s), set up a memory block and
load the JPEG files into this block in the previously described manner -
but this time using FNwimp_loadjpegfile for the loading action.

No additional actions are needed and displaying JPEGs (or printing them)
can then be carried out with:

PROCwimp_renderjpeg(jpeghandle%,bx%,by%,minx%,
miny%,maxx%,maxy%,scalex,scaley)

PROCwimp_renderwindowjpeg(window%,jpeghandle%,
bx%,by%,minx%,miny%,maxx%,maxy%,
scalex,scaley)

These are entirely similar to the sprite case - but without the need to
specify a particular image name, as there is only one image per file.
Accordingly, no further explanation is needed.

Displaying JPEGs without loading into memory
Exceptionally, RISC OS allows JPEG images to be displayed on screen
(but not printed) directly from their file i.e. without the need to first carry
out the common measuring and loading sequence.

Dr Wimp supports this option and the wimp-functions are:

PROCwimp_renderjpegfile(jpegfilepath$,bx%,by%,
minx%,miny%,maxx%,maxy%,
scalex,scaley)

PROCwimp_renderwindowjpegfile(window%,
jpegfilepath$,bx%,by%,minx%,miny%,
maxx%,maxy%,scalex,scaley)

As you can see, the JPEG handle is simply replaced by the full path name
of the JPEG file and hence no further explanation is needed.

19. Handling image files

200

Complementary wimp-functions
Complementary to the above suites of functions for displaying/printing
images are several wimp-functions offering further help with image file
manipulation.

Sprites and sprite-files
Because a sprite-file can hold more than one sprite image, there is a
wimpfunction to count the number of sprites in a sprite-file which has
already been loaded into memory. It is:

FNwimp_countsprites(sprite%)

which will return the number of sprites in the user sprite area starting at
sprite% - remembering that if you have loaded more than one sprite-file,
then you need to specify the handle which refers only to the sprite-file you
want. For example, in our three sprite-file example earlier, the three
handles were A%, B% and C% - and they were loaded contiguously into one
memory block starting at SpriteArea%.

So you would need to use either A% or B% or C% for sprite% when using
FNwimp_countsprites(sprite%).

Associated with the above is:

FNwimp_getspritename(sprite%,position%)

which will return the name of the loaded sprite at position position% in
the user sprite area defined by sprite%. Position 1 is the first sprite etc. -
so it is usually important to check how many exist before seeking a name.

More directly linked with the drawing/printing actions is:

FNwimp_getspritesize(sprite$,sprite%,side%)

19. Handling image files

201

which returns the width/height of a loaded sprite (in OS units), sprite$
is the sprite name and sprite% is its user sprite area handle. side% is 0
for the width and 1 for the height.

This, for example, can be used to check the physical size of a sprite before
displaying it - to set the position accurately or resize the window etc.

Drawfiles
In this case, as there is only one image per drawfile, the only extra wimp-
function is:

FNwimp_getdfilesize(dfile%,side%)

which returns the width/height (in OS units) of the overall bounding box
surrounding all the ‘objects’ in the drawfile loaded into the memory block
starting at dfile%.

JPEGs
Again, the only extra facility is to find the size of a JPEG image - but this
can be done either from the loaded image file or directly from the file
itself. The two wimp-functions are:

FNwimp_getjpegsize(jpeghandle%,side%)
FNwimp_getjpegsizefile(jpegfilepath$,side%)

No further explanation should now be necessary.

Specific examples
The Examples folder in the Dr Wimp package contains the applications
!ScaleDraw and !SprAreas which show in detail how points in this
chapter are implemented in practice.

19. Handling image files

202

Changing the pointer sprite
This facility does not sit entirely comfortably in this section but it does
concern sprites which can be in a user sprite area. So it is as well to cover
it now.

Using the validation string of an icon (see Appendix 5) it is easy to change
the pointer to another shape as it enters and leaves an icon. However,
Dr Wimp goes one better and provides a wimp-function to enable the
mouse pointer sprite to be changed more generally from its default shape
(and back!).

The call is:

PROCwimp_pointer(pointer%,area%,pointer$)

where pointer% can be 0 (the default pointer) or 1 (a user-defined
pointer)

area% is a handle to a user sprite area (as defined earlier in this chapter)
or 0 for the wimp sprite pool.

pointer$ is the name of the required sprite, which can be a null string if
the default pointer is to be used (i.e. if pointer%=0 and area%=0).

This is a fairly flexible function in that the values of the first two
parameters can be set independently and it will work - provided you have
the required sprites stored in the right places. The only (sensible) rigidity
is that if pointer% is set to 0 (i.e. calling for the default pointer) then the
pointer name is automatically set to “ptr_default” (the name of the
default pointer supplied by RISCOS) irrespective of the contents of the
third parameter.

A typical use for this facility is to change the pointer as it enters and leaves
a window. The Dr Wimp Manual shows how easy it is to do this, using the
pair of user-functions PROCuser_enteringwindow and
PROCuser_leavingwindow.

A further thing to note is that sprites used for pointers are normally
defined in screen mode 8 and 19 (both 4-colour modes) and attempts to
use other sprites may not work properly. Below are screenshots of

19. Handling image files

203

three different 4-colour pointers held in the Wimp pool for use by any
application - together with their names.

gright ptr_defaul ptr_write

19. Handling image files

204

19. Handling image files

205

20. Handling text

Dr Wimp offers a very wide range of wimp-functions for putting text
(including outline fonts and colour) into windows or directly onto the
screen. (Remember that putting text into icons is a separate - and easy - issue,
partially controlled by the icon validation string and some basic wimp-functions
covered early in the tutorial chapters.)

When outline fonts are used, the wimp-functions allow the font choice to
be entered as a normal font string or as a font handle.

Control codes can be inserted within a text string to change font effects
letter by letter if need be.

Further, the physical size of the displayed/printed text can be found, thus
allowing accurate positioning for various purposes e.g. tabulation.

It is easiest to introduce the various features by starting with a common
example.

PROCwimp_plottext(t$,f$,s%,x%,y%,fr%,fg%,fb%,
br%,bg%,bb%)

The string to plot is t$ and the font to use is placed in f$ in the common
‘period separated’ string form e.g. “Homerton.Bold.Oblique”.

s% is the required font size in points and x% and y% are the screen
coordinates (in OS units) where the text is to be plotted (the bottom left
corner of the ‘bounding box’ surrounding the text, to be more accurate).

The final six parameters are the foreground and background colours of the

20. Text

206

text in the common red/green/blue amounts i.e. each can take a value from
0-255 with 0,0,0 being Black and 255,255,255 being White. (The
background colour is for anti-aliasing rather than any overt visible
presence.)

The above wimp-function is directly comparable in its action with its
image counterparts e.g. PROCwimp_render etc. - except that no ‘clipping
rectangle’ is involved.

Similarly, for text plotting in a window there is:

PROCwimp_plotwindowtext(window%,t$,f$,s%,x%,y%,
fr%,fg%,fb%,br%,bg%,bb%,
minx%,miny%,maxx%,maxy%)

which does include a ‘clipping rectangle’ and equates exactly with its
image counterparts e.g. PROCwimp_renderwindow etc. - the x% and y%
values now needing to be in work area coordinates and the extra four
parameters being the clipping rectangle again.

Font handles
As we have already seen, fonts can also be defined with handles, and this
is a more sensible way to do things because the Wimp itself always uses
font handles anyway and more efficient coding results behind the scenes.

For example, the call:

FontHandle%=FNwimp_getfont(“Trinity.Medium”,12)

will return a handle for the “Trinity.Medium” font at 12-point size i.e.
one handle applies to a font/size pairing.

Note that the font specified must be available in your central font
resources - otherwise a 0 will be returned. This can be used to give a
warning to a user and perhaps substitute another one which is available.

It would be normal to get these font handles within
PROCuserinitialise.

20. Text

207

With the handles available, the corresponding set of wimp-functions for
text plotting are:

PROCwimp_plottexth(t$,font%,x%,y%,fr%,fg%,fb%,
br%,bg%,bb%)

PROCwimp_plotwindowtexth(window%,t$,font%,x%,y%,
fr%,fg%,fb%,br%,bg%,bb%,
minx%,miny%,maxx%,maxy%)

which merely add an “h” to the name and substitute a font handle font%
for the previous font string and point-size parameters.

A point to note when using font handles is that they are very much like file
handles. Thus getting a font handle is more akin to ‘opening’ a channel to
the central font resource files (and don’t forget that you are very likely to
have several font handles ‘open’ at the same time). Accordingly, font
handles ought to be ‘closed’ as soon as you have finished with them within
the application and Dr Wimp provides a simple call for this:

PROCwimp_losefont(FontHandle%)

will ‘lose’ (close) the font handle specified by FontHandle%.

Dr Wimp does, however, provide a ‘fail safe’ facility in that, on
quitting the application properly, it will automatically close any fonts
that have been opened using FNwimp_getfont or contained in any
window template loaded by the application.

Font changing within a string
So far, we have simply said that t$ is the string to plot - but Dr Wimp
offers further functions to modify this string if we wish. For instance:

FNwimp_underline(on%)
FNwimpfontchangeh(font%)
FNwimp_fontcolour(fr%,fg%,fb%)

are all available for modifying things within a string.

20. Text

208

An example of using all these calls might be:

FontHandleA%=FNwimp_getfont(“Trinity.Medium”,16)
FontHandleB%=FNwimp_getfont(“Homerton.Bold”, 24)
String$=“This is a ”+FNwimp_underline(1)+“test”+

FNwimp_underline(0)+“ string to
demonstrate changing the
”+FNwimp_fontcolour(255,0,0)+
“colour”+FNwimp_fontcolour(0,0,0)+“
and also the
“+FNwimp_fontchangeh(FontHandleB%)+”
font“

PROCwimp_plotwindowtexth(window%,String$,
FontHandleA%,50,150,0,0,0,255,255,
255,minx%,miny%,maxx%,maxy%)

PROCwimp_losefont(FontHandleA%)
PROCwimp_losefont(FontHandleB%)

which will produce the following displayed text, which has one word
underlined; the word “colour” in red (on the screen, anyway!) and a font
change for the last word:

This is a test string to demonstrate changing the colour and also the font

These effects apply only to the one string, so the next string plotted will
start in the default state.

20. Text

209

Text positioning
With these possibilities it could obviously be a problem placing/aligning
text accurately. So Dr Wimp provides the following wimp-functions to tell
you the text length and height prior to display:

FNwimp_gettextsize(text$,font$,size%,side%)
FNwimp_gettextsizeh(text$,font%,side%)

The first is for use with a font string/point-size combination and the
second with a font handle. In both cases, if side%=0 the text width
(physical length) in OS units is returned and if side%=1 the height is
returned.

You should note that if you want the width (length) of a string which has a
font change within it - as in the above diagram - these two functions do
still return the correct width. However they do not always return the
correct height in such cases. Fortunately, it is the text length which is
usually the one needed.

‘Desktop font’
With modern RISCOS computers the user can choose which font to use
for his/her normal desktop display - which, of course, will be the font
appearing by default in icons also.

It is therefore sometimes helpful to be able to ensure that directly plotted
text appears in exactly the same font as the desktop - and two wimp-
functions are provided for this. They are:

PROCwimp_deskplottext(t$,c%,x%,y%,fr%,fg%,fb%,
br%,bg%,bb%)

PROCwimp_deskplotwindowtext(window%,t$,c%,x%,y%,
fr%,fg%,fb%,br%,bg%,bb%,
minx%,miny%,maxx%,maxy%)

With one exception, the parameters are as for their previous counterparts.
The exception is the parameter c%, which determines the justification. If it
is 0 then the text is left-justified at x% - and if it is 1 the text is
horizontally centred around x%.

20. Text

210

If your computer can only use ‘system font’ - or you have chosen to
configure it to use that - the above two wimp-functions will correctly
produce their output in ‘system font’ also.

Don’t forget that if you are printing text which is plotted with the wimp-
functions in this chapter then - to cater for PostScript printers - you need
to put the appropriate ‘font declarations’ inside
PROCuser_declarefonts - see Chapter 14.

Specific example
The Examples folder in the Dr Wimp package contains the application
!PrintTest which shows in detail how points in this chapter can be
implemented in practice for a large text document.

20. Text

211

21. More on ‘user’ printing

In our tutorial application a typical printing task was tackled using the
‘redraw printing’ method and this chapter will complete the picture by
having a look at the ‘user printing’ method.

You will recall that ‘redraw printing’ essentially provides a means of
printing what is displayed on the screen (‘Wysiwyg’). In contrast, ‘user
printing“ allows you to print something independent of the screen display.

In some ways ‘user printing’ is a little easier to implement simply because
- as there is no display to copy - there is no conversion between display
coordinates and paper coordinates. We can work solely in paper
coordinates directly i.e. OS units referred to the bottom left corner of the
paper.

Having said this, the same preliminaries need to be taken care of. That is:

Check that a printer driver is installed;

Check paper size and borders;

Declare all fonts to be used, including any in rendered drawfiles (for
Postscript printer drivers).

As before, printing is initiated by calling:

PROCwimp_print(user%,window%,fpage%,lpage%,perpa-
ge%,copies%,orient%)

but this time user% is set to 1 and window% can be any value because it
will be ignored. (But don’t set it to an undefined variable!)

21. More printing

212

This (after a great deal of detailed preparation hidden behind the scenes)
will, in turn, call:

PROCuser_print(minx%,miny%,maxx%,maxy%,page%)

(Not to be confused with FNuser_printing, which again is available to check
on the printing progress.)

The first four coordinates are the now-familiar clipping rectangle, this
time supplied in paper coordinates. The clipping rectangle is generally of
less interest for ‘user printing’ but is supplied anyway.

page% is passed through from the Wimp and is the current page being
printed, which would typically be used by the programmer to determine
exactly what is to be printed on which page.

The only minor complication is having to specify printing positions with
respect to the bottom left corner. It does make sense - but it needs
concentration when, say, thinking of lines of text from the top of the page.

The printing borders obviously need to be accounted for - particularly with
text. It is easy to lose a line of text at the top or bottom of a printed page.

Also don’t forget that the Dr Wimp text plotting commands use the bottom
left corner of the text string bounding box for positioning - so the top text
line on a page needs to be positioned below the top margin by at least the
text height.

Printing sprites, drawfiles and JPEGs
Printing images is straightforward once the images have been loaded into
memory - as was described in detail in Chapter 19.

After that, the use of PROCwimp_rendersprite or PROCwimp_render
or PROCwimp_renderjpeg as appropriate - using paper coordinates
(same as screen coordinates) - will print the image with its bottom left
corner at the x%, y% position specified.

For obvious reasons, it does not make a great deal of sense to use the
‘window’ versions of these two functions when ‘user printing’.

21. More printing

213

Finally, in case a PostScript printer is used, don’t forget to ‘declare’ any
drawfile fonts as described in Chapters 14 and 19.

Length to OS conversion
We have already met FNwimp_lengthtoOS in the tutorial application and
in ‘user printing’ it is frequently used to position text/sprites/drawfiles
accurately on the paper - either in metric or imperial measurements.

For example, within PROCuser_print, the sequence:

OneInch%=FNwimp_lengthtoOS(1,100,1)
RECTANGLE FILL OneInch%,OneInch%,OneInch%

will produce a filled square of 1 inch side, located 1 inch from the left and
bottom edges of the paper.

21. More printing

214

21. More printing

215

22. Sliders and bars

Many applications use a sliding bar to indicate the progress of a task e.g.
when formatting a disc - and applications sometimes require the user to
drag a sliding bar in order to set values e.g. the colour picker. Dr Wimp
calls the first usage a ‘bar’ and the second usage a ‘slider’. That is, a bar is
essentially an output device and a slider is both an input and output
device.

Dr Wimp offers a set of wimp- and user-functions to make the
management of bars/sliders very easy.

Bars
These are straightforward. All that is needed is a small window with two
icons in it: one icon being filled with a colour to make it become the
coloured bar itself and the other being a cosmetic frame around it, like
this:

What Dr Wimp does is to alter (in one direction, decided by the
programmer) the size of the coloured icon within defined limits, to
produce the sliding bar effect.

The coloured icon needs to be of the ‘Click/Drag’ button type. The length
and depth of the bar icon can be anything you wish, but you do need to

22. Sliders and bars

216

know its icon number and required maximum length of it i.e. the ‘size’ of
the bar icon. This can be found and adjusted via !TemplEd, see
Appendix 7.

The size of the bar icon can then be changed with:

PROCwimp_bar(window%,icon%,length%,dir%)

where window% and icon% are the window/icon pair forming the bar,
length% is the bar length required at the time and dir% determines
whether the bar is to ‘move’ horizontally (as here) or vertically. If
horizontally then dir%=0. If dir%=1, the bar height would change,
keeping the width constant. This allows you to use vertical as well as
horizontal bars.

Behind the scenes, Dr Wimp deletes the bar icon and re-creates a
replacement one of the required new size - updating the display
straightaway.

So, you simply call PROCwimp_bar with whatever bar length you wish -
but it is down to you to ensure that it does not exceed its designed
maximum. (Nothing drastic will happen if you don’t - the bar will simply
overlap its frame at the right end and extend, maybe invisibly, outside its
window and thus spoiling the effect.)

A good way to minimise the chances of this happening is to set the bar
length as a percentage of its intended maximum value and ensure that this
never exceeds 100%.

As a bar is often used to show progress of a task which is taking time, it is
often useful to trigger a new PROCwimp_bar call periodically via an
‘internal multitasking’ process and the Dr Wimp Manual shows how to do
this.

Sliders
Dr Wimp implements sliders in almost as simple a way. The vital point is
that - in addition to the surrounding frame icon - the slider itself must now
be made up from two icons - of contrasting colours: the ‘slider’ icon itself
and the ‘slider back icon’ (both of the ‘Click/ Drag* button type).

The ‘slider back icon’ remains a constant size and forms the

22. Sliders and bars

217

background to the slider and defines the area over which the ‘slider icon’
can be dragged. The following figure shows the relationship for a
horizontal slider.

Slider icon Slider back icon

Cosmetic frame iconWindow background

In this case, the width of the ‘slider back icon’ defines the maximum width
that the ‘slider icon’ can be dragged over, and the height of the slider and
back icons are made to be exactly the same. Vertical sliders are
constructed in a corresponding way - and note that if the icons are made
higher than their width Dr Wimp will automatically assume that it is a
vertical slider. Luxury!

The sole purpose of the back icon is to register the presence of the pointer
in the draggable area. So it is essential that Dr Wimp knows that the two
icons are a pair - and the first action needed is to tell Dr Wimp precisely
that, using FNuser_slider and FNuser_sliderback as follows:

DEF FNuser_sliderback(window%,icon%)
Return%= -1
CASE window% OF

WHEN SliderWindow%
IF icon%=SliderIcon% THEN

Return%=SliderBackIcon%
ENDCASE
=Return%

DEF FNuser_slider(window%,icon%)
Return%= -1

22. Sliders and bars

218

CASE window% OF
WHEN SliderWindow%
IF icon%=SliderBackIcon% THEN

Return%=SliderIcon%
ENDCASE
=Return%

Note the symmetry of these two sequences. The two user-functions are
called from the DrWimp library every time a mouse-click (or drag) occurs.

If the user-functions return an icon handle/number - rather than -1 (their
default return) - then DrWimp treats the returned icons as a slider pair and
takes action accordingly. (A slider window - called SliderWindow% here
- has to be loaded and opened, of course.)

Merely by entering a sequence like the above, the slider will correctly
operate: either by dragging or by clicking in the slider area. You are saved
all the hassle.

There are then three other complementary functions to enable you to
harness the slider usefully. The first is:

PROCuser_slidervalue(window%,slider%,pcent%)

which continuously reports the slider percentage value (of the slider icon
slider%) whilst dragging is happening. (This facilitates ‘live’ updating of
a number read-out, for instance.)

The second is:

FNwimp_getsliderpcent(window%,slider%)

which returns the current slider percentage value - in the range 0-100 and
which can be a real number.

22. Sliders and bars

219

And the third is:

FNwimp_putsliderpcent(window%,slider%,pcent)

which allows a slider value to be changed to the specified value - which
again can be any real number in the range 0-100.

The 0-100 percentage values can easily be scaled for any range you wish -
and don’t forget that you will need to use STR$ to convert the returned
value into a string for displaying it in an associated icon, for instance.

Specific examples
The Examples folder in the Dr Wimp package contains the applications
!Bar and !Slider which show in detail how bars and sliders are
implemented in practice.

22. Sliders and bars

220

22. Sliders and bars

221

23. Panes

Panes are windows which are linked with another window so that they
seem to be permanently attached together and move as one when dragged.

Typical examples of panes are:

the toolbox window attached to a !Draw window.

toolbars within a word-processor window.

In fact, panes are separate windows, designed and carefully placed with
respect to their parent window and having their opening and closing
actions carefully linked.

As usual Dr Wimp makes their management very easy - with the help of
FNuser_pane which is used in concert with PROCuser_openwindow
and PROCuser_closewindow.

These latter two user-functions are called by the DrWimp library every
time a window has just been opened or closed (respectively) and they pass
to the programmer the window handle involved. (For
PROCuser_openwindow, the window position and stack position are also
passed.)

It is therefore straightforward to trigger the opening/closing of another
window - e.g. the pane - within these user-functions, and if the opening is
carried out by using PROCwimp_openwindowat the positioning of the
pane can be accurate.

23. Panes

222

The role of FNuser_pane is to keep the DrWimp library aware of the
window/pane relationships so that the pane always appears to ‘sit on top
of its parent window (that is, in relation to their displayed stack positions: their
x/y positions are independent and controlled by you, the programmer).

This is done with a simple routine such as:

DEF FNuserpane
Return%=-1
IF window%=Main% THEN
Return%=Pane%
ENDIF
=Return%

This tells the DrWimp library that the parent window, with the handle
Main%, has a pane whose handle is Pane%.

The only thing that needs to be watched is when a parent window has
more than one pane. In this case you need only to decide their required
‘stacking order’ and in no circumstances should you try to attach a
pane to a pane.

The Dr Wimp Manual covers this whole subject very comprehensively.

Specific examples
The Examples folder in the Dr Wimp package contains the applications
!MultiPane, !PanePain and !Toolbar which show in detail how
panes are implemented in practice.

23. Panes

223

24. The ‘NULL%’ global variable and
‘internal multi-tasking’

Very early on in this book the Dr Wimp global variable NULL% was
mentioned, at that time only to register that it was one of few global
variables used by Dr Wimp which does not follow the normal pattern of
having a name starting with a lower-case “w”.

NULL% is always initially set to FALSE by the DrWimp library in the Wimp
initialisation action.

It is then checked by the DrWimp library prior to each call made to
SYS “Wimp_Poll” within PROCwimp_poll. If it is still FALSE at this
point then there is no reason to use Reason Code 0 and it is duly ‘masked
out’ of the poll.

If NULL% is TRUE at this point then Reason Code 0 is not masked out and
every time it occurs (which is very often indeed) another internal function
is brought into play - and this, in turn, calls PROCuser_null.

Thus, if NULL% remains false nothing much happens, but if at any time the
programmer has set NULL% to true then PROCuser_null is called each
time Reason Code 0 is received - until NULL% is again set to false.

The programmer can therefore then use PROCuser_null to carry out
very quick background tasks while nothing else is going on i.e. ‘internal
multi-tasking’.

24. NULL% & multi-tasking

224

Bearing in mind that Reason Code 0 occurs very many times,
PROCuser_null needs to be used with care if the application is not to be
slowed down considerably. Nonetheless, the facility is there if you need it.

However, Dr Wimp also offers some useful alternatives with:

PROCwimp_singlepoll
PROCwimp_pollidle
PROCwimp_singlepollidle

PROCwimp_singlepoll
As its name indicates, this wimp-function makes a call to the Wimp Poll
just once - at whatever place you choose to put it in your program (which,
of course, will almost certainly already be running inside the main
Wimp Poll loop).

The effect is to provide multi-tasking within the application.

Try it by putting the following routine temporarily into (a copy of) the
!Fuel16a !RunImage.

2742 WHEN 1
2744 FOR N%=1 TO 300
2746 PROCwimp_singlepoll
2748 a$=STR$(N%)
2752 PROCwimp_puticontext(Info%,4,a$)
2754 NEXT

Now save it and run the application. Press <menu> to display the iconbar
menu, then trigger the action by pressing <select> on the first menu
item - ‘Info’. Then bring up the menu again and slide right across ‘Info’ to
show the Info window. You will see the text in the top icon changing as it
counts up to 300. It does not stop other actions being taken.

24. NULL% & multi-tasking

225

PROCwimp_pollidle(duration,seconds%)
This is probably of more specialised use because it is used instead of the
usual PROCwimp_poll and probably not in a loop.

What it does is to call the Wimp Poll once every interval set by the value
of duration. (If seconds% is set to 1 then the value of duration will be
interpreted as seconds. If seconds% is 0 then duration will be interpreted
as centi-seconds.)

So, for instance, by also setting NULL%=TRUE a call to PROCuser_null
would then only occur once every interval of duration.

PROCwimp_singlepollidle(duration,seconds%)
This acts similarly to PROCwimp_pollidle except that it calls the Wimp
Poll once only - after a delay of the value of duration.

These wimp-functions are undoubtedly a bit specialised and need to be
used with care.

The Dr Wimp Examples directory contains four example applications
using them. They are: !Animate, !Clocker, !FastSlow and
!SlowFast.

24. NULL% & multi-tasking

226

24. NULL% & multi-tasking

227

25. Colour picker

If you have a RISCOS Version from 3.50 onwards you will be familiar
with the Colour Picker window, from applications such as !Draw and
!Paint.

The Colour Picker is a special window which enables the application user
to choose, visually, what colour is required - from the complete range of
colours available. A colour can be specified by clicking on the colour
actually displayed in the window, or by specifying the proportions of the
constituent colour components.

(These colour components can be in RGB, CMYK or HSV terms: these
are known as the ‘colour models’ and the Dr Wimp manual covers
them comprehensively).

With Dr Wimp you can get the Colour Picker window either by opening it
exactly like any other window, or by opening it as a ‘submenu’ from a
menu item.

‘Dialogue type’
If you open the colour picker window as a ‘sub-menu’ it will, as you
would expect, close automatically like any other sub-menu if you move
the pointer back over the menu item from which it came - and if you click
elsewhere on the screen. This is known as the ‘sub-menu dialogue type’.

If you open the colour picker window as an ordinary window, Dr Wimp
also allows you to have the choice of closing it in the normal way (e.g. by
clicking on its Close icon) or closing like a menu i.e. closing when a click
is made elsewhere.

25. Colour picker

228

In all cases, the window will close automatically when you use <select>
over the colour picker window’s ‘OK’ or ‘None’ buttons (but using
<adjust> will keep it open as usual).

The Colour picker as a normal window
This is the easiest method and there are two wimp-functions available -
but only one will be introduced here. It is:

PROCwimp_opencolourpickerrgb(dialoguetype%,
red%,green%,blue%,none%,x%,y%)

This can be regarded as the basic operation: it opens the colour- picker
window in the RGB model and the initial colour is specified in red%,
green% and blue% using colour component values in the familiar range
0255.

If dialoguetype% is set to 0 the window will stay open until the user
presses its Close icon or makes a colour selection by pressing ‘OK’ or
‘None’. If it is set to 1 the window will act like a menu and close if the
mouse is clicked outside the window (as well as pressing ‘OK’ or ‘None’
of course).

none% chooses whether the ‘None’ button is available or not and whether
it is selected when the colourpicker window opens. A value of 0 means the
‘None’ button will not be available for use; 1 means it will be available
and initially de-selected; and 2 means it will available and initially
selected.

x%/y% are simply the required screen OS coordinates for the top left corner
of the opening colour picker window.

This wimp-function is called in similar circumstances to using
PROCwimp_openwindow and is perfectly straightforward in practice.

25. Colour picker

229

The Colour picker as a ‘sub-menu’
Opening the colour picker as a ‘sub-menu’ involves two steps.

A special global variable called wSUBMENUCOLOURPICKER% (a mouthful,
but you won’t easily forget it!) has been created in the DrWimp library to act,
in this case, as the colour picker window handle - and is set to 1 as default.

If you want the colour picker window to appear as a sub-menu to an
(already defined) parent menu item, then the first step is to ‘attach’ the
above global variable to that item as its sub-menu/window handle, e.g.:

PROCwimp_attachsubmenu(parentmenu%,3,
wSUBMENUCOLOURPICKER%)

This action ensures that the required item (here, 3) on the parent menu
(whose handle here is parentmenu%) correctly displays a submenu
‘arrowhead’ - and that is all it does at the moment.

The second step is to decide which of two wimp-functions you wish to use
to actually cause the window to open (when you move across the menu
arrowhead) and put it into PROCuser_overmenuarrow.

As before, we will show only the simplest of the two wimp-functions here.
It is:

PROCwimp_opensubmenucolourpickerrgb(red%,green%,
blue%,none%,x%,y%)

As you can see, this matches the previously-described wimp-function for
opening the colour picker window normally - except that there is no
dialoguetype% parameter because, in this case, the colour picker
window will always act exactly like a sub-menu i.e. it will use the ‘sub-
menu dialogue’.

25. Colour picker

230

A typical coding might therefore be:

DEF PROCuser_overmenuarrow(nextsubmenu%,
parentmenuitem%,x%,y%)

CASE nextsubmenu% OF
WHEN wSUBMENUCOLOURPICKER%

PROCwimp_opensubmenucolour-pickerrgb
(255,187,0,0,x%,y%)

ENDCASE
ENDPROC

This would cause the colour picker window to open when you move
across its parent menu’s arrowhead - and, here, it would open with the
RGB model showing a pale straw yellow and without a ‘None’ button. It
will open in the same place as a conventional sub-menu, because the x%/
y% values have been passed directly from the user-function in which it sits.

Making the colour choice
Once the user has decided which colour is wanted from the displayed
colour picker window, he/she presses the window’s ‘OK’ button (or
‘None’ button). Therefore you, the programmer, need a means of
extracting the user’s choice from the colour picker window and into your
program for further use.

Dr Wimp provides two user-functions for this purpose. One provides the
chosen colour output in 0-255 ‘rgb’ values and the other in the values of
the ‘model’ actually selected in the colour picker window at the time the
selection was made.

Note that outputs are always made automatically by Dr Wimp into
both of these user-functions when the user makes the colour choice -
irrespective of the actual configuration of the colour picker window at
that time.

25. Colour picker

231

To match our previous descriptions we will look at only the simplest of the
two user-functions here. It is:

PROCuser_colourpickerrgb(red%,green%,blue%,none%)

As already said, this is called automatically every time the user makes a
colour selection in the colour picker window i.e. when the user presses
‘OK’ or ‘None’.

If ‘OK’ was pressed, then the user-function will pass the values (0-255) of
the chosen colour in red%, blue% and green% - and none% will be set to
0.

If ‘None’ was pressed, then the currently displayed colour values in the
colour picker window will still be passed, but none% will be set to 1. (So
it is up to you to decide how to react to none% having a value of 1. For
example, you might want to ignore the colour data in this case, or you
might want to store the values in order to open the window with these
values next time.)

Irrespective of the method you chose to open the colour picker window
and irrespective of the actual ‘model’ currently selected in the window at
the time you made your colour choice, PROCusercolourpickerrgb
will always give the values red%, green% and blue% in the range 0-255,
which is often used in other wimp-functions and can therefore be
conveniently passed on directly.

The Dr Wimp Manual gives a full explanation of all the colour picker
options - in particular, a description of the ‘colour models’ and the wimp-
functions and user-function provided for using them all i.e. the functions
not covered in this chapter.

Specific example
In the Examples folder of the Dr Wimp package there is an application
called !ColPick which gives a practical demonstration of how to use the
above-described facilities.

25. Colour picker

232

25. Colour picker

233

26. Important common facilities

Dr Wimp includes a number of facilities which are likely to appear in any
full application and some of which are designed to help you comply with
the RISCOS Style Guide painlessly.

Writable icons and the keyboard
Because of the particular nature of keyboard operations the Wimp has to
be helped to know whether a particular keypress is going to be used by
your application or is intended for another. For this reason, all Wimp
applications must have a ‘keyboard handler’ in place. Dr Wimp provides
this via FNuser_keypress.

Further, for writable icons, the effect of pressing one of the keyboard keys
when an icon has the caret is controlled in RISCOS by the contents of the
icon’s validation string (see Appendix 5) - in particular, the A-command
and the K-command.

The ‘keyboard handler’ and the validation string work in harmony: the
Acommand controls which keyboard characters are allowed (or not
allowed) to be typed into a writable icon - and the K-command determines
which keypresses are passed to Dr Wimp for use in FNuser_keypress
and also - in later RISCOS versions - how the caret is moved among
different writable icons in the same window.

In our tutorial we only needed the application to take special action if the
<return> key was pressed when the caret was in certain icons. (You will
recall that this keypress initiated some validation tests.) However, many
applications will want to do more than that.

26. Common facilities

234

The definition of this user-function in its default (‘empty’) state is:

DEF FNuser_keypress(window%,icon%,key%)
=0

and - as said above - it is called automatically by the DrWimp library if one
of your windows has the input focus and the keypress has been passed to
your application by virtue of its validation string K-command setting.

If you do take action on a specific keypress in FNuser_keypress then
you should change the return from the function to 1 (as we did in the
tutorial) when you have done so, instead of returning its default value of 0.
A return of 1 tells the Wimp that you have dealt with the particular
keypress and it will then not try to pass it on to other applications.

Further aspects on this topic are best left to Appendix 5.

Errors
Dr Wimp provides two standard error facilities plus the means for making
‘custom-built’ versions.

The first is:

PROCwimp_error(title$,error$,button%,prefix%)

which brings up the standard error box, with the first two parameters
specifying your own choice of window title and error message.

There is the choice of having either an ‘OK’ button or a ‘Cancel’ button,
by making the third parameter 1 or 2 respectively. The title can also be
prefixed with ‘Error from’ or ‘Message from’ by setting the final
parameter to 1 or 2 respectively.

Clicking on the displayed button simply closes the window and it is left to
the programmer to arrange for any necessary consequential action to take
place.

26. Common facilities

235

This wimp-function is probably the most commonly-used Dr Wimp error
facility. As the above implies, it can be used for helpful warning messages
as well as for real errors - and the skeleton Dr Wimp !RunImage itself
contains a typical global real error call near its very start. (This appears as
Line 160 in the tutorial application.)

By and large, warnings to the user are not ‘fatal’ i.e. the program does not
quit after reporting the problem - whereas genuine programming errors are
normally ‘fatal’.

The second standard option provided is:

FNwimp_errorchoice(title$,error$,prefix%)

which is a FN rather than a PROC and always displays a standard error box
with both ‘OK’ and ‘Cancel’ buttons.

But this time the wimp-function returns TRUE if ‘OK’ is pressed by the
user and FALSE if ‘Cancel’ is pressed.

This wimp_function is often used to get the user to confirm a certain step
before taking it, with the TRUE/FALSE return deciding the subsequent
action path.

Custom error boxes
To allow you to design error boxes of your own, Dr Wimp uses the already
introduced user-functions:

PROCuser_openwindow
PROCuser_closewindow

together with two new wimp-functions:

PROCwimp_bindpointer(window%)
PROCwimp_releasepointer

26. Common facilities

236

The procedure is that you design your error window as you wish - with as
many action buttons as you like - and then load it as usual and cause it to
open when needed. Let’s assume the window has a handle called
ErrorWindow%.

Then, within PROCuser_openwindow, a sequence such as:

CASE window% OF
WHEN ErrorWindow%
PROCwimp_bindpointer(window%)

ENDCASE

is added - and, within PROCuser_closewindow, the complementary:

CASE window% OF
WHEN ErrorWindow%
PROCwimp_releasepointer

ENDCASE

completes the picture.

This will prevent the pointer going outside your custom error box until the
user has taken one of the choices offered in it.

It is therefore very important that - whatever else you cause to happen
- a PROCwimp closewindow call is made when the user makes a
choice. Otherwise there is no way out!

The Dr Wimp Manual has an example of this facility within its own
tutorial.

26. Common facilities

237

Messages
(Not to be confused with the Wimp Messaging system introduced in Appendix 10!)

Many applications nowadays use Messages files to hold the various items
of text that are used in the application e.g. the different error messages, or
for preparing menus (as we have already seen in Chapter 17). It makes the
editing of such text much more convenient, particularly where the same
message is used by different parts of an application. It also means that
such messages can be translated into other languages by someone who
does not need to know anything about programming.

RISCOS (from version 3.00 onwards) provides SYS calls to handle
Messages files - including the ability to insert strings into messages when
they are called (rather like passing parameters in star commands).

As usual, Dr Wimp makes things a lot easier by using what is now a fairly
familiar method. The messages are prepared and stored in a textfile in a
special (but simple) format. This file is identified to Dr Wimp which, in
turn, sets up memory blocks ready to read the file. Wimp-functions are
provided to manage the process.

The first step is to prepare the Messages textfile. This is straightforward:
each text message is entered as required but is preceded with a ‘token’
which is separated from the message text by a colon. A typical example of
part of a Messages file might be:

#Error messages
ErrorA:The date needs to be in dd/mm/yyyy format
ErrorB:The mileage entry must be higher than last

time. Please correct.

#Miscellaneous
Ver:version 2.02 (16th May 1998)

In this simple example, “ErrorA”, “ErrorB” and “Ver” are tokens,
which essentially means that we can retrieve the message for use simply
by referring to its token.

26. Common facilities

238

It is important to ensure that <Return> is pressed at the end
of the last entry of the Messages file - otherwise the last
entry will not be recognised.

Once the Messages file exists, a call to:

FNwimp_initmessages(path$)

does all the necessary setting up, where path$ is the full file path of the
file. The return from this FN is the handle of the Messages file, which is
used in other wimp-functions to read the file etc.

Whenever a message text is to be retrieved from the Messages file, a call
to one of three similar wimp-functions then does the trick. These are:

FNwimp_messlook0(messagefile%,token$)
FNwimp_messlook1(messagefile%,token$,a$)
FNwimp_messlook2(messagefile%,toke$,a$,b$)

FNwimp_messlook0(messagefile%,token$) returns the
corresponding message text untouched. Thus:

PROCwimp_error(YourAppName$,
FNwimp_messlook0(messagefile%,
“ErrorA”),1,2)

would bring up an error box with “The date needs to be in dd/
mm/yyyy format”, if the earlier example textfile was used.

The two other wimp-functions return the message text complete with one
or two parameter text substitutions respectively - provided the message in
the textfile has been set up accordingly.

26. Common facilities

239

For instance, if the previous textfile entry for “ErrorB” was changed to:

ErrorB:The mileage entry must be %0 last time,
Please correct.

the call:

FNwimp_messlookl(messagefile%,“ErrorB”,
“lower than”)

would produce the message with the text “lower than” substituted for
%0.

Similarly, if the message textfile entry was changed to:

ErrorB:The %1 entry must be %0 last time. Please
correct.

the call:

FNwimp_messlook2(messagefile%,“ErrorB”,“lower
than”,“temperature”)

would produce the message with the text “lower than” substituted for
%0 and “temperature” substituted for %1 and would appear as:

“The temperature entry must be lower than last
 time. Please correct.”

It’s as simple as that, but in the last case note that the string parameters
placed in a$ and b$ are substituted for %0 and %1 respectively -
irrespective of the order they appear in the message (and even if they
appear more than once).

Other points to note are:

If FNwimp_messlook0 is used with a message containing %0 or %1
then no substitutions will occur and the returned text will merely
print a null string where the %0 (or %1) occurs.

26. Common facilities

240

If FNwimp_messlook1 or FNwimp_messlook2 is used with a
message which does not contain any %0 or %1 then no error will
occur. The message will be returned exactly as if
FNwimp_messlook0 had been issued.

Similarly, if FNwimp_messlook2 is used with a message which
contains only %0 (or %1) then no error will occur. The message
will be returned with just the possible substitution(s) in place.

Interestingly, in many cases it takes less memory to use messages instead
of putting the text in the program lines. The message procedure takes extra
space for the tokens, but each message string needs only to be stored once
even though it can be used several times in the program.

You can also find the number of messages with a given token in an
initiated Messages file - using:

FNwimp_getnumberofmessages(messagefile%,token$)

Re-initiating Messages files
There are several circumstances where it is helpful to be able to change a
Messages file after it has been initiated and yet keep the same Messages
file handle. For example, you may want to alter the file contents during the
program run, or even substitute a completely different Messages file.

Dr Wimp allows you to do this very simply. All it takes is a call to:

FNwimp_reinitmessages(messagefile%,path$)

where messagefile% is the handle of the existing Messages file and
path$ is the full path name of the new Messages file.

The return is the Messages file handle - which may well be different from
what it was. So if you want to keep the same file handle variable you
simply need to call the wimp-function like this:

messagefile%=FNwimp_reinitmessages(messagefile%,
path$)

That is, re-assign the new handle to the old handle’s variable.

26. Common facilities

241

Interactive help
Dr Wimp supports RISCOS’s interactive help system, activated via !Help
or similar applications. It is extremely easy to implement using the two
user-functions provided:

DEF FNuser_help(window%,icon%)
DEF FNuser_menuhelp(menu%,item%)

The first acts for windows and icons only and the second for menus. Their
usage is very similar.

If RISCOS’s !Help (or a similar application) is running, the DrWimp
library calls these user-functions whenever the pointer is over a window/
icon or menu belonging to your application, passing the window/icon or
menu/item and icon handles.

All you have to do is arrange for the user-function to return the required
text instead of the default null string.

A typical construction might be:

DEF FNuser_help(window%,icon%)
Help$=“”
CASE window% OF

WHEN NewCar%
CASE icon% OF

WHEN 0
Help$=“Enter a car registration here
- of at least 6 characters”

ENDCASE
ENDCASE
=Help$

You will then see your chosen text appear in the help display when the
pointer is over icon 0 in the NewCar% window. (In this example, the window
and icon handles are those from the tutorial application in earlier chapters. The
icon is the one in which the user has to enter the car registration when setting up
a new vehicle file.)

An entirely similar process is used with FNuser_menuhelp, using the
menu handle and menu item number instead of the window/icon
combination.

26. Common facilities

242

As you may well have realised, a convenient means of holding the help
text is in a messages textfile as described above.

Dynamic areas
Dynamic areas provide a means, from within a program, of creating a
block of memory which can be expanded or shrunk at will during the
program run - limited only by the computer memory available. This is
particularly useful, for instance, where the sizes of data files which might
need to be loaded by the application are not known.

The Wimp only allows dynamic areas with RISCOS version 3.01 and
higher - and it also uses a different method to implement them from
version 3.50 onwards. Dr Wimp provides facilities to cover both situations
with automatic detection of the RISCOS version.

The difference between the two methods is that, for RISCOS version 3.50
and above, the Wimp allows fully flexible dynamic areas to be created
solely for an application - from the ‘Free’ application memory pool. When
the application quits the dynamic area is returned to this pool. Dr Wimp
calls thes types Application Dynamic Areas (ADAs).

However, for RISCOS versions from 3.01 onwards (but less than 3.50) a
more restricted method is used, whereby an application is able to create a
dynamic area in the Relocatable Module Area (the RMA) instead. This has
the disadvantage that the Module area is a common resource for all
applications, which can lead to wasted memory space caused by
‘fragmentation’ (a similar process to what happens if Basic string variables
are not ‘sized’ before use).

Dr Wimp’s facilities handle either ADA or RMA transparently.

26. Common facilities

243

To create a dynamic area:

FNwimp_createdynamic(size%,maxsize%,type%,drag%,n-
ame$)

is used and returns the handle (start address) of the dynamic area.

size% is the required initial size of the memory block in bytes, It can be
set to 0, but the Wimp may set a minimum size of 4kbytes anyway.

maxsize% is the maximum size to which the dynamic area can be
enlarged to subsequently. It is important to try to set this to a realistic limit
- and often size% and maxsize% can be made identical i.e. no increase
needed. If you really do not want to limit the value then you can enter -1
here, which has the special meaning of ‘no limit’ - but the use of this
value is not recommended unless absolutely necessary as it can lead to
problems in dynamic area management.

type% is 0 for ADA or 1 for RMA, but note that if the RISCOS version is
less than 3.50 then RMA will be used automatically, whatever the value of
type%. (By setting type% to 1 with version 3.50 or greater, the dynamic area
will be forced into RMA. This allows you to check out your application for version
3.1 usage if you have a lot of dynamic area manipulation intended.)

drag% can be 0 or 1, but is ignored unless type% is 0, in which case it
allows you to alter the dynamic area size by dragging the corresponding
bar in the Task Display (in the Dynamic areas section).

name$ is the name that will appear in the Task Display if type% is 0.
(Don’t confuse this with the dynamic area handle returned by the function
and used to access/change the area.)

Having created the dynamic area it can be used to store whatever you wish
- in exactly the same way as a block of bytes which has been created with
DIM. But don’t forget to ensure its size is large enough for your specific
purpose - preferably before each usage. For example, to save a sprite or
drawfile to it, you would measure the sprite/drawfile first (see earlier
chapters) and then change the dynamic area accordingly, before taking the
save action.

26. Common facilities

244

Once created as above, a dynamic area can be changed in size by:

FNwimp_changedynamic(darea%,absolute%,size%)

where darea% is the handle of the dynamic area to be changed. (As with
re-initiating Messages files seen earlier, it would be normal to assign the return
from the above to darea% again.)

If absolute% is set to 1 then the value in size% will be interpreted as the
required new absolute size of the dynamic area. If absolute% is set to 0
then the value in size% will be interpreted as relative i.e. the amount of
memory to be added/subtracted to/from the current dynamic area size. (In
this case, a minus sign is placed in front of the size% value if it is a
reduction.)

The current size of a dynamic area created in this way can be measured
with:

Size%=FNwimp_measuredynamic(darea%)

where darea% is the dynamic area handle.

Finally, as soon the dynamic area is no longer required it should be
deleted, using:

PROCwimpdeletedynamic(Handle%)

As a ‘fail safe’ facility, on normal quitting (and on quitting due to most
fatal’ errors) Dr Wimp will automatically delete any dynamic areas
created in the above way which have not already been deleted.

26. Common facilities

245

Quitting
Dr Wimp provides two functions to help us to quit applications in a
controlled and orderly fashion. They are:

FNuser_quit

and:

PROCwimp_quit

(Don’t mix them up, mentally!)

It needs to be remembered that an application may be required to quit as a
result of:

- ‘Quit’ being chosen as a user option from within the application

- ‘Quit’ being chosen against the application in the Task Display

- Shutdown being chosen from the Task Manager menu

When any of these occurs, the DrWimp library causes:

DEF FNuser_quit(type%)

to be called, passing 0 in type% if it is a Quit action or 1 if it is a Task
Manager Shutdown.

The default return from this user-function is 1, which simply means
“continue with the quit/shutdown action”.

However, if 0 is returned the quit/shutdown action is stopped. This paves
the way to allow us to, say, save unsaved data before quitting. All that is
needed is a flag of some type to be activated when unsaved data exists and
for that flag to be tested within DEF FNuser_quit, such as:

26. Common facilities

246

DEF FNuser_quit
Quit%=1
IF UnSaved%=TRUE THEN Quit%=0
=Quit%

This example is, of course, very basic and only stops the quit/shutdown. A
more useful sequence might therefore be to bring up the appropriate save
box to be actioned and then allow the quit/ shutdown action to continue.

The Dr Wimp Manual gives a more detailed example using an error box to
warn that unsaved data exists and showing how to implement the usual
asterisk in a window title when unsaved data exists.

The second function is PROCwimp_quit and its main purpose is to allow
the user to initiate quitting from the application.

This is done by calling:

PROCwimp_quit(type%)

where type% is set to 0 to quit the application or 1 to invoke the Wimp
Shutdown procedure (which latter will quit all running applications, of
course).

Typically, as indeed was the case in our tutorial application (Line 2730),
the call is made with type% set to 0 and normally follows from the user
selecting ‘Quit’ from the iconbar menu.

The main result of making this call is, as implied above, to cause
FNuser_quit to be called by the DrWimp library.

The Dr Wimp manual contains a whole chapter on managing quitting
and shutdown.

26. Common facilities

247

27. Other facilities

The preceding chapters have attempted to introduce all the main features
of Dr Wimp, but the coverage is by no means total and the package’s own
on-disc Manual needs to be examined to complete the picture -
particularly its Section 3 which lists all the available user-functions and
wimp-functions. (The Manual is always updated with each release of a
new Dr Wimp Version and therefore the list of available user-
functions and wimp-functions applies only to that Version.)

The following list shows some of the topics covered by Dr Wimp and not
mentioned elsewhere in this book:

Finding out contents of a directory

Reading ‘system variable’ contents

Hourglass

Changing ‘WimpSlot’

Introducing a pause

Issuing a ‘star command’

Plotting some standard geometric shapes

Alerting a screen Mode change

Intercepting ‘wimp messages’

Implementing the ‘iconiser’ protocol

Reading and setting window scroll

Displaying a ‘banner’

27. Other facilities

248

27. Other facilities

249

Appendix 1. SYS calls (SWIs)

Normal Wimp programming depends so much on using SYS calls that a
review of how to use them is worthwhile - even though using Dr Wimp
makes this invisible to us.

SYS calls are the means provided by RISCOS to give the programmer easy
access to a multitude of useful Software Interrupt (SWI) routines. The
PRM index lists over 18 pages of SYS calls so there is not much you can’t
do!

In the earlier versions of BBC Basic the star command *FX was provided
for this purpose (and is still available today, for backward compatibility).
This allowed very many OS features to be selected/deselected e.g. enable/
disable the arrow keys; set flash rate of flashing colours; etc. It worked
very well with ‘set/reset’ types of actions but was limited and somewhat
awkward to handle when input parameters needed to be passed to, or
output results were wanted from, the OS routines.

In BBC Basic V (and VI) the keyword SYS provides a much enhanced and
much easier-to-use facility.

Keyword SYS
The general format of SYS is best described with a real example:

SYS “OS_ReadModeVariable”,-1,1 TO ,, ScreenWidth%

This particular SYS call, as the words imply, reads information about the
screen mode - but let’s concentrate on the general structure of the SYS
statement rather than the particular example.

Appendix 1. SYS calls

250

In its simplest form, a SYS statement breaks down into three parts:

name

input parameters (if any)

output variables (if any)

and the example above contains all three.

Name
The first item after the keyword SYS is “OS_ReadModeVariable” and
this one-word string (i.e. no spaces) is the name of the particular routine.

Note that the name is very similar in construction to a variable name and
the use of capital letters at the start of each ‘sub-word’ is the same policy
used in this book for naming variables.

As with variables, the match must be exact i.e. the string name is case
sensitive - so “OS_Readmodevariable” will not do.

The technical name for the routines called by SYS is SWIs (“Software
Interrupts”) and you may often see the two words used synonymously.

With such a large number of SWIs available there really is no option other
than to use the PRM if you need to know fully what is available.
Fortunately, we need to know only a few SWIs for the purposes of this
book and they are introduced as needed.

Each SYS/SWI has a number as well as a name. Either can be used. Thus,
in our example above:

SYS &35 , -1 , 1 TO ,, ScreenWidth%

would do the same thing. (It is usual to use hex numbers for SWIs.)

The string version makes it far easier to read what a listing intends, so you
are recommended to keep to this - although the numbers are processed
faster. (As you might expect, there are SWIs to convert SWI names to
numbers and vice versa. They are:

Appendix 1. SYS calls

251

“OS_SWINumberToString” (&38)
“OS_SWINumberFromString” (&39)

Variables can also be substituted for the direct SWI name/number if you
wish. Thus:

ModeInfo% = &35
SYS ModeInfo% , -1 , 1 TO ,, ScreenWidth%

or:

ModeInfo$ “OS_ReadModeVariable”
SYS ModeInfo$, -1 , 1 TO ,, ScreenWidth%

would each work equally well.

Input parameters
After the SWI name/number, but before the TO, appears some numbers
separated by commas - including the comma after the SWI name/number.

These are input parameter values being passed by the programmer to the
routine. The parameter values need to be in the order and of the type
specified (by the PRM) for the particular SWI, which are usually an
integer number but sometimes a string - real numbers are not used here. In
particular, memory locations (integers) are very commonly required as
input parameters.

These parameters are passed to special storage locations called “registers”,
of which up to eight are available to Basic, named R0 to R7.

Not all SWIs use all eight registers and in our example only two are used
and both need integer numbers (i.e. here R0 is -1 and R1 is 1). Again, the
PRM is needed to find the details of how many parameters/registers are
used, what each of them means and what type and range of values each
can take.

Appendix 1. SYS calls

252

In our example, R0 is used to pass the screen mode number we are
interested in, or -1 is used to denote “the current mode in use”. So, we
could have put, say, 12 here if we had wanted to know about MODE 12.
The next parameter/register (Rl) is used to choose which item of mode
information we want to know about - and the PRM lists thirteen items to
choose from. Our example has used 1, which means “How many text
characters per line in this mode?” (Other items include No. of text lines,
maximum no. of colours, pixel size, etc.)

When a string is passed as a parameter, it is actually the memory address
of the string that is passed to the register i.e. as with indirected icon text -
and this is done automatically by Basic, so the programmer need only
enter the string in the right place in the SYS statement (directly in quotes,
or by reference to a string variable name).

Entering parameter values
If we are providing input parameter values to be placed in the registers, it
is pretty obvious that we have to ensure that we list them in a manner
which causes no doubt as to which value is to go to which register.

Generally, this is simply achieved by listing the input values in register
number order (R0 first, then R1 and so on). However, it is quite common
for an SWI to use only a few registers, not necessarily starting with R0
and/or not necessarily consecutive.

To cope with all variations unambiguously, commas are used to
“acknowledge the presence” of any register not used but preceding a used
register.

This is easier to show than to explain in words. Imagine an SWI requiring
input parameter values to be placed only in registers R2 and R4 - with a
string and a number respectively. To be unambiguous, our SYS statement
would therefore need to show the input parameter values as follows:

SYS “SWI_NameString” , , , “R2InputString” , ,
R4InputInteger%

Appendix 1. SYS calls

253

Effectively, what this shows is that each input parameter value needs to be
regarded as being preceded by a comma i.e. <, Value> and if the value
is not given then the comma must still be used, to show that a value is
missing. In our mythical example above, the first two commas show that
values for R0 and R1 are missing; the third comma is the one which
precedes “R2InputString”; the fourth comma shows that an R3 value is
missing, and the fifth comma is the one preceding R4InputInteger%.

If the SWI is being used only to make an input (i.e. no output results to be
returned) then the SYS statement simply ends after the sequence of input
parameters.

Output variables (with the keyword TO)
If a SWI provides any output results, then the same set of registers (R0-
R7) are used for the result values - which again may be integer numbers or
strings. (Thus, any input values placed in the registers may well be
overwritten by output values from the routine.)

The SYS statement helpfully allows these output results to be assigned
directly to Basic variables. This is done by using the keyword TO after the
input parameter values (if any) and then listing the required ‘destination
variable’ names of the right type, separated by commas, in the order
corresponding to the registers. As before, commas are used if necessary to
cope with registers whose value is not required for output.

Thus, in our earlier real example:

SYS “OS_ReadModeVariable”,-1,1 TO ,, ScreenWidth%

we have used TO followed by ,, ScreenWidth% - because the PRM tells
us that the output we want is an integer number and it is going to be
placed in register R2 in this case. Further, the PRM tells us that registers
R0 and R1 will be left unaltered from their input values.

Hence, we are not interested in the output values in R0 and R1 but we have
to ‘acknowledge their presence’ and this we do by putting a comma to
represent each of them i.e. two commas in this case. We can then follow
these commas with the variable name

Appendix 1. SYS calls

254

Screenwidth% and there will now be no doubt that this is our required
destination for the R2 output result.

Note that there is an important difference in the use of commas between
the input parameters and the output results. Assuming that both are present
in the SYS statement, then there is always a comma in front of the input R0
value (i.e. after the SWI name/ number) but not in front of the R0 output
result variable (i.e. after the TO). If TO happens to be followed
immediately by a comma it means that we have decided not to assign the
R0 output result to a variable.

To demonstrate the point we can expand our previous mythical example
to:

SYS “SWI_NameString” , , , “R2InputString” , ,
R4InputInteger% TO R0OutputVariable%,
 , R2OutputVariable%

when output results from R0 and R2 only are required (and assuming they
are both integer numbers).

Or:

SYS “SWI_NameString” , , , “R2InputString” , ,
R4InputInteger% TO , ,
R2OutputVariable%

if only the result from R2 is wanted.

Parameter blocks
Frequently in Wimp programs, we need to send/receive rather a lot of data
to/from a SWI in a SYS call - far more than can be done with eight
registers. For instance, when using the SWI for defining a window on a
Wimp screen we need to pass the size, colours, heading text etc. - maybe
20-30 items. In such cases, great use is made of “parameter blocks”.

A parameter block is simply a block of memory set aside by the
programmer for the purpose of holding the required data; maybe a few
bytes or maybe several ‘pages’ of memory.

Appendix 1. SYS calls

255

The starting address of the data block is then passed as a parameter to the
SWI - and the SWI automatically reads the data from the block
(previously placed there by the programmer) and the SWI often puts some
or all of the output result data into the same block (this time for the
programmer to extract and use).

It is the PRM, of course, which details which parameters need to be of this
type and the minimum data block necessary and where each item of data
needs to be placed within it.

To set aside a block of memory for this purpose we usually use the
keyword DIM, For example:

DIM BlockName% SizeOfBlock%

remembering that there must be a space between BlockName% and
SizeOfBlock%.

Final points
By and large, with 18 pages of available SWIs, there are very few aspects
of the OS that you cannot directly interface with the SYS keyword. It is
probably worth noting that SWI names are very helpfully structured - as
our earlier example demonstrated:

SYS “OS_ReadModeVariable”

The first part of the name - before the underscore character - gives the
heading of the group of SWIs that this one belongs to - the ‘OS’ group in
this case. There are ‘headings’ for printer drivers, sound, Wimp, fonts,
colour etc. so it is easier to find what you are looking for.

Dr Wimp
If you use Dr Wimp all of the SYS calls are hidden from view, of course.
Indeed the main purpose of Dr Wimp is to do just that, relieving you of the
considerable intricacies of registers and parameter blocks.

Appendix 1. SYS calls

256

Appendix 1. SYS calls

257

Appendix 2. Reason Codes

0* Null code (“Nothing has happened requiring application action”)

1 Redraw window request

2 Open window request

3 Close window request

4* Pointer is leaving window (or that window area is now covered)

5* Pointer is entering window (or that window area is now revealed)

6 A mouse-click has occurred

7 A user drag action has just been completed (i.e. at ‘drop’ position)

8 A keyboard key has been pressed in a window with input focus

9 A selection has been made from a menu

10 Window scroll request

11* The caret has gone to another window (maybe in another task)

12* The caret has arrived at a window (maybe from another task)

13 (“Poll word non-zero”) Used to force task to carry out a priority
job temporarily

14 (Reserved)

15 (Reserved)

16 (Reserved)

17* (Used to manage messages of the Wimp Messaging system.)

18* (Used to manage messages of the Wimp Messaging system.)

19* (Used to manage messages of the Wimp Messaging system.)

* These Reason Codes can be masked out during task
initialisation.

Appendix 2. Reason Codes

258

Appendix 2. Reason Codes

259

Appendix 3. Application resources

Open any application directory and you will probably find a fairly similar-
looking set of files/folders. The following screens hot is of our tutorial
application, for instance.

These files/directories hold various ‘resources’ needed to allow the
application to operate as intended. Typically, at least some of the following
files/directories will be present:

!Run
!Boot
!RunImage
!Sprites
Sprites22
Templates
Messages
!Help
Modules
Fonts

The reason why most applications use the same structure for these
resources is that the RISCOS has in-built management arrangements
which offer considerable advantages to the programmer if the resources
conform to recommended practices - as described in the RISCOS Style
Guide.

Appendix 3. Application resources

260

To give a practical example, if you double-click on an application icon the
RISC OS will automatically look inside that application’s directory for a
file called !Run, and run it. So, the standard way to make an application
start via the usual Wimp method is to include a !Run file and put the
necessary instructions in it.

The other items offer their own advantages, as described below:

!Boot (not to be confused with your computer’s main start-up !Boot
application). When you open a directory window, the RISCOS
looks to see if there are any applications inside it (i.e. directories
with names starting with “!”) and, if so, looks inside their
directories for a !Boot file, which it then runs.

Typical of the contents of a !Boot file are the lines:

Set TestApp$Dir <Obey$Dir>
IconSprites <TestApp$Dir>.!Sprites

The first line creates a ‘system variable’ called TestApp$Dir
and stores in it the application’s current full path (i.e. the path of
the directory which was double-clicked - not the full path of the
!Boot file).

The second line tells the Wimp where any sprites special to that
application are being held - the application sprite itself, for
instance - and effectively adds these sprites to the common pool
that can thereafter also be accessed by any application, until the
computer is switched off.

If the sprite file contains a sprite whose name is exactly the same
(but all in lower case) as the application’s name, then the Wimp
will display that as the application’s identifying sprite in the
opened directory window.

Another typical item in this file is an instruction to tell the Wimp
that certain file types ‘belong’ to this application - so that,
thereafter, double-clicking on such a file will cause this
application to be run and for the file to be loaded into it.

By running an application’s !Boot file, the Wimp is said to be
‘seeing’ the application - because it now knows where the
application resides (and its sprite, usually) and can find it again if
need be.

Appendix 3. Application resources

261

A !Boot file is not mandatory. If it does not exist then the
application will still have been ‘seen’ if its parent directory
window is opened, but may appear in the window with the
default RISCOS-supplied application sprite instead of its unique
one.

!Run As already stated, this file is run when you double-click on the
application’s icon. Typical contents are:

Set TestApp$Dir <Obey$Dir>
IconSprites <TestApp$Dir>.!Sprites
WimpSlot -min 128K -max 128K
Run <Obey$Dir>.!RunImage

and there can be many more lines of commands.

Note first of all that the two lines in the !Boot file are usually
repeated - in case the application is started before it has been
‘seen’ e.g. from the Command Line.

The third line tells the Wimp how much memory to allocate for
the application and this value will be reflected in the
application’s entry in the Task Display. If this line is not included
the Wimp will allocate a default amount of memory shown by
the ‘Next’ item in the Task Display. (The ‘Next’ value can be
changed by dragging its bar in this display or by using a third
parameter with a WimpSlot command - usually in the start-up
!Boot application.)

The last line tells it to run the !RunImage file i.e. run the
program.

It is essential to have a !Run file if you want an application to
start in the usual way i.e. by double-clicking on its application
icon.

!Boot and !Run files are both of the ‘Obey’ file-type and each line of
action in them is a ‘star command’.

Appendix 3. Application resources

262

!Sprites and !Sprites22 RISCOS provides a large number of
standard sprites in a central resource which any application is
free to use. But if you want the Filer to use some other sprites to
display your application and any of its special files, then these
sprite-files are the place to keep them. Ideally, application and
file sprites should be provided for ‘small icons’ and pinboard use,
as well as standard size versions. The RISCOS Style Guide gives
the rules for sizing/naming them.

The contents of the two files can look identical at first sight, but
!Sprites22 is used to hold high-definition sprites which are
brought into play automatically if a high-definition screen mode
is used. !Sprites23 is also seen sometimes and is for high
definition black-and-white screen modes.

It is important to appreciate that - to follow the Style Guide -
these sprite-files are meant exclusively for use by the Filer and as
such are effectively added to the central pool of sprites by the use
of the Star Command *IconSprites in an application’s !Boot
and/or !Run files (see above).

Any sprites intended for use solely by and within an application
should strictly be held in a separate sprite-file - often just called
Sprites - and handled by creating a ‘user sprite area’. By doing
this, the memory taken by the user sprites can be released when
the user quits the application. Dr Wimp has special facilities for
handling this type of sprite - see Chapter 19.

Templates This resource is covered in more detail in Appendix 7
and elsewhere in this book. It is a more convenient way to design
and store window/icon definitions.

Modules and Fonts Just as with sprites, RISCOS provides facilities
to store and manage special ‘re-locatable’ programming routines
(called ‘modules’) and fonts.

Appendix 3. Application resources

263

If an application has a need for such resources then they are
usually supplied in these application folders. However both of
these types of resource can only properly be managed by the
Wimp if they are added to its central pools.

Therefore, the usual procedure is for the !Run file to include a
check for their presence in the central pool - and any that are not
present are copied and initialised accordingly, before the
!RunImage is run. Alternatively, sometimes this check is done
as part of an installation procedure the first time the application
is used.

Once they are added to the central pools it is usual for them to
stay there ‘permanently’ - because they tend to be resources
which are useful for more than one application. (However, they can
be removed if need be e.g. very occasionally a module might be
incompatible with another application and need to be removed or
disabled before it can operate.)

Messages (Not to be confused with the Wimp Messaging system!) The
Wimp has convenient facilities for handling the various message
strings which appear in error/warning boxes etc. - by holding
them in a separate textfile in a special way. Chapter 26 introduces
this in detail.

The !Run file might typically be used to identify the location of
the Messages file to the application.

!Help If an application has a !Help file, the Wimp will
automatically detect this when the application is ‘seen’ and the
‘Help’ item on the Filer menu will be enabled when <menu> is
pressed over the application icon - and selecting this item will
display the file.

(This is independent of the interactive Help facilities offered by RISCOS
and described in Chapter 26.)

Appendix 3. Application resources

264

Appendix 3. Application resources

265

Appendix 4. Window/Icon button types

The standard RISCOS mouse has three buttons which are called Select,
Menu and Adjust. For right-handed people, these are usually configured in
the order left/middle/right respectively. (In this book, clicking with these
buttons is shown as <select>, <menu> and <adjust> respectively.)

The middle button (Menu) is special in that pressing it over a window or
icon always causes the Wimp to report that the action has occurred.

However, for the Select and Adjust buttons, the characteristics of windows
and icons can be defined so as to respond in different ways to different
types of button clicks e.g. single clicks, double-clicks, drags, button
release etc. can all be distinguished specifically, if required by the
programmer.

The characteristic of window/icon design which determines this is called
the ‘button type’ and the Wimp currently offers button types 0-15 (of
which, button types 12 & 13 are not used).

The only sensible way to describe each button type is in a table and this is
shown below.

Once a button type has been defined, the Wimp automatically manages
things so that responses (Reason Code 6 - see Chapter 1) are only
generated when the appropriate mouse-click actions occur.

In addition, for a single mouse-click, the Wimp identifies which mouse
button has been pressed by using a ‘button number’, as follows:

Button number

<select> 4 (binary 100)

<menu> 2 (binary 010)

<adjust> 1 (binary 001)

Appendix 4. Button types

266

Note the binary values: the position of the 1 in the 3-bit sequence is
different for each mouse button. If more than one button is pressed at the
same time the returned number is simply the appropriate addition of these
values e.g. <select>+<adjust> pressed together would be represented
by 4+1=5 (binary 101).

Do not confuse ‘button type’ and ‘button number’!

Where a button type permits more than one click action (e.g. Type 10
‘Double-click/click/drag’) the Wimp distinguishes between these by
simply multiplying the above button number by a given factor e.g. times
16, for drags.

If double-click is one of the allowable actions i.e. Types 5, 8 or 10, the
Wimp will also report the initial click first.

Dr Wimp handles the Wimp responses from all the allowable button types,
for both windows and icons, via PROCuser_mouseclick and
PROCuser_menu - see Chapter 8.

Thus, Dr Wimp has no restrictions when using window templates to
design windows/icons. Neither is there any restriction on icons if they are
created within a program via FNwimp_createicon.

Appendix 4. Button types

2
6
7

A
p
p
e
n
d
ix 4

. B
u
tto

n
 typ

e
s

Button type Description
Number Name

0 Never Mouse-clicks are ignored (except <menu>)

1 Always Wimp continuously reports pointer presence over window/icon

2 Click (auto-repeat) Wimp reports click (auto repeat)

3 Click(single) Wimp reports click

4 Release Wimp reports button release (If icon, click selects, moving pointer away deselects)

5 Double-click Wimp reports double-click (If icon, click selects)

6 Click/drag as for 3, but Wimp also reports drag

7 Release/drag as for 4, but Wimp also reports drag (and moving pointer away from icon does not deselect)

8 Double-click/drag as for 5, but Wimp also reports drag

9 Menu as for 3 (but for icons, pointer over icon selects and moving away deselects)

10 Double-click/click/drag Wimp reports double-click and single click and drag

11 Radio as for 6 (If icon, click selects)

12 (reserved)

13 (reserved)

14 Writable/click/drag (Applies to icons only) As for 6 but also click gains caret and parent window gains input focus

15 Writable As for 14, but without drag

The Button type numbers are those used for the parameter button% in Dr Wimp’s
wimpfunctions FNwimp_createicon and FNwimp_createwindow - see Chapter 13.

268

Appendix 4. Button types

269

Appendix 5. Icon validation string

A ‘validation string’ is simply one of the characteristics of an icon. It is a
particularly powerful feature because it allows a very large range of icon
features to be set.

As with the other icon characteristics (e.g. size, position, button type etc.)
the validation string must be defined at the time the icon is created -
whether via a window template or by direct creation within a program
(using SYS calls or Dr Wimp’s wimp-functions). If you do not wish to use
a validation string then it needs to be set to a null string, which is done
automatically by template editors.

The one thing that must be done if a validation string is to be used is that
the icon must be defined as having, at least, indirected text.

The validation string, which needs to be in the correct format, comprises
one or more ‘Commands’. If more than one command is present they must
be separated by a semi-colon.

Commands
These commands all take the form of a single letter (best as a capital, for
good visibility) followed by a series of letter/number/text codes. There are
eight official single-letter command types A, D, F, K, L, P, R and S - but
the popular window template editor !TemplEd (and possibly others) also
uses N.

A typical, multi-command validation string looks like this:

Ktar;Pptr_write;F17

which is a validation string using just three of the available commands -
K, P and F.

The only sensible way to introduce the various commands is one by one:

Appendix 5. Validation string

270

A-command : (A)llow
This controls the user-input to writable icons. Essentially, it determines
which keyboard characters will be accepted/rejected for the text in the
icon. It therefore provides a very powerful first line of input validation.

The rationale of the structure of this command is that it states which typed
characters (in the ASCII range 32-255) are allowed to be entered into the
writable icon, assuming it has the input focus.

Thus the command:

A0-9a-z

would mean “allow the icon to display any of the digits in the range 0-9
inclusive and any of the lower case letters from a-z inclusive”. Thus, if the
user types:

Joe90

when the icon has the caret, the icon would display only:

oe90

because the upper-case “J” is not allowed.

Any key presses which are not allowed are either dealt with by the Wimp
automatically or passed on via the conventional Reason Code 8 - see
Chapter 7 and Appendix 2.

The symbol ~ (the tilde, ASCII character 126) is used to specify
exceptions or “not the following”. For example, the string:

A0-9a-z~tbg

means “allow any of the digits from 0-9 inclusive and any of the lower
case letters from a-z inclusive, except the characters t, b and g”

Appendix 5. Validation string

271

By default, all the normal keyboard characters are allowed. It is therefore
common to see the A-command immediately followed by ~ and then some
exceptions. For example:

A~0-9

would mean “allow all characters except digits in the range 0-9”.

Because the four characters ;~\- (ASCII characters 59, 126, 92 and 45) are
also normal keyboard characters but have special meanings within the
validation string, if you want to specify them for inclusion/exclusion you
need to precede them with the \ character. Thus:

A~\~

means “allow all normal keyboard characters except ~”.

Finally, the space (ASCII character 32) is a valid keyboard character, so
using a space within an A-command will actually mean something!

Don’t forget that the A-command only determines the
characters that will (or will not) be allowed to appear in a
writable icon as a result of a keyboard keypress. It does not
control whether the keypress is reported to the application
and passed on to FNuser keypress. See the K-command
below.

Appendix 5. Validation string

272

D-command: (D)isplay
This is typically used for icons which are going to have a password typed
into them. The command:

D*

would mean that any (of the allowed) characters typed in would appear in
the icon as *.

So, if you wanted the password to look like a row of dashes, you would
need to use:

D\-

i.e. use a preceding \ as described in the A-command, because - has a
special meaning in validation strings.

F-command: (F)ont colour
This specifies the background and foreground colour for anti-aliased fonts
- note the order. For example:

Fc7

would set the background colour to Wimp colour &c (decimal 12) and the
foreground colour to Wimp colour 7.

By default, “F07” is used i.e. Black on White normally.

Appendix 5. Validation string

273

K-command: (K)eys
This command is probably the most complicated and it determines how
the caret moves between icons and also allows certain keys to be given
specific functions. It is particularly relevant to which keys are passed
to the key% parameter in Dr Wimp’s user-function FNuserkeypress.

The scope of the K-command has changed with different RISCOS
Versions. The following is believed to be relevant to Versions from
3.60 onwards.

The command is followed by one (or more) of the letters R, A, T, D or N,
which are shown in upper-case here but are best used in lowercase in the
Command - for clarity (see later):

R -pressing <return> will move the caret to the next writable icon
(next in icon number sequence) within the same ESG - if there is
a next icon. If it is the last (or only) writable icon, then ASCII
code 13 will be passed to the application, (i.e. in Dr Wimp, key%
will be 13 in the third parameter of FNuser_keypress.)

A -Pressing the <up>/<down> arrow keys will move the caret to the
next writable icon (if there is one) in the same ESG. If it is the
first/last writable icon then the caret will be moved to the last/
first writable icon. That is, the caret will be cycled round a group
of writable icons. The arrow keypresses will not be passed to the
application.

T -Pressing <Tab> or <Shift-Tab> will have the same effect as
for the <down>/<up> arrow keys as described above.

D -Pressing any of the keys <Copy>, <Delete>, <Shift-Copy>,
or <Ctrl-U> or <Ctrl-Copy> will cause the appropriate key
code to be passed to the application in addition to the usual
editing action occurring.

N -All keypress codes will be notified to the application, even if
they are automatically handled by the Wimp. (This is the
Kcommand needed to get ordinary keyboard letter presses in a
writable icon passed to FNuser_keypress.)

Appendix 5. Validation string

274

K-commands can (and often do) have more than one of these options
selected. For instance:

Kar

will activate both the <return> and arrow key functionalities as
described.

(This example also demonstrates why it is clearer to use the subsequent letters in
lower-case.)

L-command: (L)ine spacing
This allows long text to be formatted over more than one line in an icon. It
is particularly useful for Error boxes.

Note that:

The text must be centred both horizontally and vertically;

The icon must not be ‘writable’ (i.e. not user writable);

The font cannot be anti-aliased.

P-command: (P)ointer
Allows the pointer shape to be changed whilst it is over the icon. Thus:

Pptr_write

will cause the pointer to change to the common blue vertical text cursor
when it is over the icon.

The text after the command (here, “ptr_write”) must be the name of a
sprite in the Wimp sprite pool and it must be a 4-colour sprite.

(Using *IconSprites allows your own sprite designs to be loaded into the
Wimp sprite area - see Appendix 3.)

Appendix 5. Validation string

275

R-command: bo(R)der
This command sets the particular type of border for the icon - assuming
that the border option has also been selected - and will override the default
border.

R is followed by one of the following numbers which specifies the border
type:

0 - normal border
1 - ‘slab out’
2 - ‘slab in’
3 - ‘ridge’
4 - ‘channel’
5 - action button (highlights when selected)
6 - default action button (highlights when

selected)
7 - ‘editable field’
8 or more - as for 0

If 5 or 6 is used, a second number can specify the particular highlight
colour (which is Wimp colour 14 by default)

S-command : (S)prite
Used to specify the name of the sprite in a text-plus-sprite icon.

Two sprite names can be used, comma separated, to specify a second
sprite to be used when the icon is highlighted - otherwise the default
‘EORed’ colours are used. If two sprites are used they must be the same
size. (An example of using two icon names can be seen with the ‘nudger’ icons in,
say, the !Slider application in the Examples folder.)

Appendix 5. Validation string

276

N-command : (N)ame (!TemplEd additional feature)
If you use !TemplEd - included in the Dr Wimp package and described in
Appendix 7 - it allows the use of a further validation string command
called the N-command.

This permits each icon to be given a name, which can then be used in the
application programming instead of icon numbers. A utility is included to
extract the icon names from a template file and to present them for direct
inclusion into a Basic or C program listing.

Appendix 5. Validation string

277

Appendix 6. !Fabricate

This is a very simple but highly effective utility application included with
the Dr Wimp package - in the Utils directory.

Its purpose is to produce, within a few seconds, a fully-working,
customized initial application at the start of a new programming task -
ready for your more detailed program development.

!Fabricate has been developed considerably in recent years and can
now provide the programmer with a customised starting point well beyond
the supplied seminal !MyApp application.

To use it, you do have to be familiar with at least Chapters 4 and 5 of this
book (or the first few pages of the Dr Wimp Manual’s own tutorial) - but
that is all.

!Fabricate comes with its own comprehensive !Help file, so we will give
only an outline description here.

It is easiest to explain how to use !Fabricate by showing the utility’s
main window. So load !Fabricate onto the iconbar in the usual way and
click <select> over it to get:

Appendix 6. !Fabricate

278

Note that the window has a pane within it which has a scroll bar. The
above screen shot has the uppermost part of the pane visible and the
process simply requires us to work down this pane from top to bottom.

So, the first place to visit is the writable icon with the label ‘Application
Name’. Delete what is there already and enter the name you want for your
new application - don’t forget to start it with a “!”.

The yellow icon shows which Dr Wimp version your new application will
be using. You cannot alter this - and your version of !Fabricate may
show a different Dr Wimp Version here. But, whatever it is, the
corresponding DrWimp library will automatically be placed in your new
application directory when created.

The next icon shows the WimpSlot size that will appear in your new
application’s !Run file. You may well have to increase this (by editing the
!Run file directly) as your application develops. The shown value should
be enough to get you started.

Now scroll the pane down to get:

Appendix 6. !Fabricate

279

This part concerns the iconbar icon. So, decide whether or not you want
your application to start with an iconbar icon (most do). If so, check that
‘Iconbar icon’ is ticked - which will ensure that the rest of the options in
this section are enabled for your detailed choices. You can accept the
default entries or make your own.

Type into ‘Handle’ the handle/variable name you want to use for the
iconbar icon handle in your application’s !RunImage.

If you want the iconbar icon to have text beneath it from the start then this
is entered at ‘Iconbar text’.

If you want to alter this text to a larger string during the program run then
you need to specify the maximum size in the box below.

(If you don’t want an initial text but want to add some during program run you
can do that by entering a null string in ‘Iconbar text’ but setting the required later
maximum size below.)

The final choice in this section is the radio icons choosing which side of
the iconbar you want your iconbar icon to appear.

Now scroll the pane down to get:

Appendix 6. !Fabricate

280

This section concerns the iconbar menu.

If you want your starter application to come ready with a standard 2-item
iconbar menu i.e. with just the usual ‘Info’ and ‘Quit’ items, then tick the
box accordingly and decide upon the menu handle name.

Alternatively, you can start off with your own design of iconbar menu.
Just select the ‘Custom iconbar menu’ radio button and enter your required
maximum menu size. Clicking the lower button will then open another
window into which you can enter your choice of menu item text.

Now scroll the pane down to get:

Via this section you can get your starter application to contain your own
window template file and for the !RunImage to load all of its windows
and for one of these windows to be opened when the user presses
<select> over the iconbar icon. This carries out quite a lot of routine
coding work for you and is well worthwhile.

Appendix 6. !Fabricate

281

Clicking the first option icon enables the drag box for you to drag in your
own template file.

Clicking the lower option icon arranges for you to get a menu of your
window names and to choose which one will be opened from the iconbar
click.

Again, scroll the pane down to get:

As you can see, we have now moved on to the ‘Info’ window. If you want
your application to have one (and most do) first tick the ‘Info window’
item. Then, as for the iconbar icon, decide what handle name you want for
your ‘Info’ window and enter this.

Then decide if you want this window to be attached as a ‘sub-menu’ to the
“Info” item on your iconbar menu (the usual way).

You then have a choice of using a standard Info window (supplied by
Dr Wimp) or one of your own. If the latter it must be included in the
window templates file dragged into !Fabricate in the previous step.

Appendix 6. !Fabricate

282

If you want the standard window then select the appropriate radio icon and
enter your required text into the ‘Purpose’, ‘Author’ and ‘Version’
sections.

Now scroll the pane down to get:

This section allows you to include your own sprite file with the starter
application and arrange for it to be merged with the application’s
!Sprite/!Sprite22 files (provided automatically) - and hence loaded
into the Wimp sprite pool via the standard !Boot and !Run files.

Appendix 6. !Fabricate

283

Now scroll the pane down to get the final section:

This allows you to include a standard ‘Save’ window (as per tutorial) with
your starter application and to choose which type of file it will save - and
what path/leaf name appears in its writable icon.

Creating the starter application
Having made all your choices we come to the final moment for creating
your new starter application.

Click on ‘OK’ (near the top of the non-scrolling right side of the window)
and a standard Save box will appear, showing an application icon.

Drag the application sprite to the Filer window of your choice and in a few
seconds your new starter application will appear.

Open its application folder and you will see a complete typical set of
application resource files (similar to that in Appendix 2) - plus a copy of
the DrWimp library. The detailed contents will, of course, depend on the
choices you have made in !Fabricate’s window.

You should examine the contents of each file in appropriate editors, to
reassure and familiarise yourself with what, precisely, !Fabricate provides.
It seems like magic the first time you use it!

In particular, the !RunImage will contain all the necessary code to reflect
the choices you made in the !Fabricate window and, most importantly,
it will include all the user-functions for the particular version of the
DrWimp library included - some with code in them reflecting your choices
in !Fabricate’s window.

Further, the !RunImage coding will include a fair sprinkling of comments
so that you can see what code has been added and why.

Appendix 6. !Fabricate

284

As promised, everything is therefore ready for you to start developing
your new application further from a starter application which is already a
fair way downstream.

Don’t forget that everything provided is a starter position: you can change
and/or add to it as you wish.

There are a few further things worth noting about !Fabricate:

Having gone through a specific selection of choices to create a new
application you might want to save those choices for use again.
You can do this from the ‘Save current settings’ button on the
right of the window. This brings up a Save box to save a file in
the “FabFile” format. These can be loaded back into
!Fabricate simply by dragging them in - or by selection from
the menu that appears when you press ‘User files’.

Each time you press ‘OK’ to create a new application the settings
are automatically saved into a ‘FabFile’ called ‘LastOK’ which
you can restore by pressing ‘Reset to Last OK’ - but don’t forget
that this file will be overwritten the next time you press ‘OK.

You can also reset to the default settings at any time by pressing
‘Reset to default’.

You will get a warning if you attempt to create a new application in
a directory which already contains an application with the same
name. Pay heed to that warning as it will completely wipe out
the whole of the existing application if you continue.

!Fabricate is always upgraded with a new Dr Wimp version. So,
be careful to use the latest version.

!Fabricate really is a very worthwhile time-saver at the start of any
new application development. Get to know it!

Appendix 6. !Fabricate

285

Appendix 7. The !TemplEd application

For all Wimp applications, the user action revolves around windows and
therefore window/icon design and layout is of paramount importance.
Indeed it is often the first thing done when starting to program a new
application (and this would fit in well with the use of !Fabricate).

As this book has shown, you can design your windows/icons the hard way
or use a graphics editing utility to produce a window template file i.e.
using a ‘template editor’. Even where there is good reason to avoid using
templates overtly (perhaps to keep them safe from ‘meddling’) it is always
a lot easier to use a template editor for the design and convert its output
subsequently - see Chapter 13 and Dr Wimp’s !CodeTemps utility.

Because of their importance to both ‘ordinary’ Wimp programming and
Dr Wimp, it seems worthwhile to describe how template editors are used
and a particular one therefore needs to be chosen for this.

There are several template editors around, but one of the most popular -
and the one supplied with the Dr Wimp package - is !TemplEd a PD
Freeware product by Dick Alstein. This appendix looks at this utility
(Version 1.34) in some detail - but it is not intended to replace the
documentation supplied within the utility itself.

!TemplEd
Introduction
!TemplEd is a Wimp-compliant graphical template editor i.e. it allows
you to design and/or edit window templates in a conventional Wimp
manner, mainly using ‘drag and drop’ actions.

In its supplied state, it can cope with up to 100 windows in each template
file and up to 200 icons per window. There is also a limit of 8000 bytes of
indirected buffer space. These values are large enough to cope with most
needs but can be altered if need be in the application’s !Run file.

Appendix 7. !TemplEd

286

Only one template file at a time can be handled by !TemplEd, so if you
need to work with more than one file at a time e.g. to copy windows from
one template file to another, multiple copies of !TemplEd need to be
running, each with its own iconbar icon. This is usually no problem (apart
from the common difficulty of remembering which iconbar icon
represents which template file!).

Creating a new template file from scratch is covered in detail below but,
provided !TemplEd has been ‘seen’, double-clicking on an existing
template file will start up !TemplEd and load the file ready for viewing/
editing. (This is often useful to find out how others have designed their windows/
icons.)

Creating a new template file
To make the description more meaningful, the following goes through the
sequence of designing the ‘NewCar’ window (in a templates file called
“Templates”) from the tutorial application in Chapters 4 to 16.

To start a new window templates file, !TemplEd is loaded onto the
iconbar in the usual way. Pressing <select> over it brings up the
following two small windows, one in each top corner of the screen. (Note
that the left one will be empty at first and not exactly as shown.)

Appendix 7. !TemplEd

287

The right-hand one (called “Icon info”) is not of initial use, but note that
by default it appears at a reduced size with its size icon in the ‘small’ state
accordingly. It is worth bringing it up to full size - as shown here - to see
what else it contains and then reducing it again until needed. If you don’t
do this there is a distinct risk that you will not realise that some of the
window is hidden and might be confused a little later!

The left-hand window (called “Templates” by default) is the one mostly
used at first. Pressing <menu> over it brings up the TemplEd menu which,
at the start, has only the first of its several items available for selection,
called ‘Create’. Sliding over this item brings up a writable box into
which the name of your new window needs to be entered. So type
“NewCar” here and press <return>. (The window name can always be
changed later, so choose anything if you are not sure.)

The results will be that a small blank default window opens on the screen
(with NewCar also as its title) and a small representative icon appears in
the Templates window, with NewCar as its label (exactly as in the
previous screenshot). This icon will have a yellow centre (to indicate that
its window is open) and the Templates window will have an asterisk
added to its title (to show that unsaved data now exists).

To create other windows in the same Templates file you simply repeat
the process of pressing <menu> and typing a different name in the ‘Create’
writable box. Each time you do this a new icon will be added to the
Templates file and a new window will appear - all of the same default
size at this stage.

You can save the Templates file from the ‘Save’ item on the ‘TemplEd’
menu, which will now be enabled. As usual, you will have to drag the file
icon to a directory of your choice the first time you save it.

Check that a yellow icon changes to white when you close its
corresponding window - and double-click on the icon to re-open its
window.

Many of the other items on the ‘TemplEd’ menu are similar to the
standard Filer menu and work similarly. A few others are different and we
will come to them later.

Appendix 7. !TemplEd

288

Assuming that icons are going to be added, it is usually best to leave the
default window unaltered at this stage and we will come back to the
window characteristics later.

But it is good practice to save the new template file now - and frequently
during the creation sequences…

Saving
Saving a complete template file is straightforward and the normal
arrangements are available from the last item on the ‘TemplEd’ menu -
obtained by pressing <menu> over the background of the templates file
window. There is no keyboard shortcut e.g. the common use of
<ctrlF3> is not available.

You can also save an individual window template by pressing <menu>
over one of the template file window icons and following the ‘Template
xxxx’ menu item to its sub-menu. Again, the last item on the sub-menu is
‘Save’. This feature is also particularly useful for copying individual (or
groups) of window templates from one template file to another - simply
drag the save icon to the required template file window.

Adding icons
The description which follows creates several different types of icons and
uses this as a vehicle to introduce the practical operation of !TemplEd. It
covers all the more common icon-editing needs but there are many further
options available whose details can be found in the !TemplEd on-disc
manual. The important aspect of the following is that it uses a certain
sequence for creating icons. Clearly, it is not the only possibility but it is
offered as a sensible one until greater familiarity is gained.

Icon palette

Bring the NewCar window up to its full size and press <menu> over it.
Above the dotted line, this ‘Window’ menu deals with icons only and at
this stage only ‘Create icon …’ will be available. Select this and yet
another window will open, called ‘Icon palette’.

Appendix 7. !TemplEd

289

As its name says, this window contains a selection of all the basic icons
you are likely to need. If you need something different it is best to choose
the nearest one from the palette and ‘tweak’ its precise characteristics to
your liking.

All the icons on the palette can be dragged (like files) so select the white,
writable icon. Then press and hold <select> until the pointer changes to
a hand and then drag the icon to the NewCar window and drop it. A copy
of the icon now appears in the window (and the asterisk duly appears in
the title of the Templates window once again).

Icon info window

Now bring the Icon info window up to full size and move the pointer
over the NewCar window and then over its newly-acquired icon. The
working of the Icon info window should now be obvious, but note that
the icon number is 0. Icons in a window are numbered in the order they
are created, starting from 0. Their numbers can be changed, as will be
shown later. (Reduce the Icon info window again to avoid distraction.)

Appendix 7. !TemplEd

290

Icon editing window

We need to edit the new icon for the particular application. Let’s assume
that it is going to be the writable icon into which a new car’s registration
number is to be entered. Therefore, for instance, we want it to have a red
outline and to display its text/numbers in outline font.

So, either double-click on the new icon or choose ‘Icon#0.Edit...’ from the
‘Window’ menu (after pressing <menu> when over the icon) - or select the
icon and press <ctrl-E>. All will bring up the Edit icon window.

This window, which is quite ‘busy’ for the newcomer, is split into four
main areas plus some action buttons. The first thing to note is that changes
to the icon are not implemented until you press ‘Update’ (or ‘Update
& Exit’). This might take a little getting used to. For instance, pressing
<return> will not implement the changes.

Button type

A good place to visit first is the ‘Button type’ section, about two- thirds of
the way down. Button types are described in detail in Appendix 4 and as
we selected the writable icon from the icon palette, it should be no
surprise to see that ‘Writable’ already appears in the box.

However, in other cases you might not always want the exact settings from
the icon palette. If you move the pointer over the box with ‘Writable’ in it,
the pointer will change to the menu symbol and <select> will bring up a
list of all 16 button type options, for your consideration. Selecting any
item on the list will change the box entry accordingly. (If you want this
change to be put into effect, don’t forget to press ‘Update’!)

Although you can visit this area at any time, it seems sensible to get the
button type right from the start.

Appendix 7. !TemplEd

291

ESG (Exclusive Selection Group)

If you choose icons with the ‘Menu’ or ‘Radio’ button type (or if you have
several writable icons among which you want the caret to ‘cycle’ - see
Appendix 5) the ESG value will also need attention.

The ESG is a number in the range 0-31 inclusive, with the value 0
meaning that no ESG applies - and 0 is the default value and used by most
icons. But if any other value is used the Wimp ensures that only one icon
at a time can be selected (high-lighted) among those icons with the same
ESG.

The most familiar application of ESG is with icons of the ‘Radio’ button
type. Typically, there may well be a group of, say, 4 icons offering one
choice from 4 mutually-exclusive features e.g. Up/Down/Left/Right. If
you click over the ‘Left’ icon it is selected and Up/ Down/Right are all
de-selected. You can only ever have one choice selected from among
these 4. That is, they are all in the same ESG. This is arranged simply by
setting the ESG value of all four to the same non-zero number (in the
range 1-31) and making sure that any other non-zero ESG values used by
other icons in the same window use different numbers from this group.

‘Menu’ icons also need to have a non-zero ESG - otherwise they blink
rapidly whilst the pointer is over them. In this case, each ‘Menu’ icon
needs to have its own exclusive ESG value. An example of this is given a
little later.

Text/Sprites/Indirection

The three options at the top left of the Edit icon window are probably
the next place to visit. This is the area where we decide whether or not an
icon is going to contain text and/or a sprite, and how the text and/or sprite
name is to be handled.

Let’s look first at the cases where only text or a sprite is to be put into an
icon (i.e. not both).

If the text length is no more than 11 characters (a sprite name always will
be) and the text or sprite will not change at all whilst the application is
running, then a ‘direct’ text/sprite name can be used. This means that the

Appendix 7. !TemplEd

292

text/sprite name concerned will be an inherent and unchanging part of the
icon design, stored as part of the icon definition

However, if the text is longer or the text/sprite needs to be changed whilst
the application is running, then the icon must be defined as ‘indirected’.
All this means is that the place where the icon definition would store the
direct text/sprite name is taken instead by a pointer/buffer (a memory
location) at which the text is held - and it can now be up to 255 characters
long in any indirected text icon, although we need to define the maximum
number of characters we wish to use in each case.

Now, whenever the Wimp displays/redraws the icon, it looks at the pointer
location and extracts what it finds there. So, if you have changed the
contents at the pointer location since the last time, the icon will show
different text (or a different sprite).

If an icon is to show both text and a sprite, indirection is necessary and the
sprite name is included in the ‘validation string1 - see Appendix 5.

The first icon we chose above was a writable one, so the text is certainly
intended to be changed and needs to be indirected. No sprite is required.
So, at the top of the Edit icon window, the first and third options need
to be ticked but not the second one - and this should be the default state
for this icon when the window appears.

A suitable maximum text length value also needs to be entered into the
‘Max size’ box, to the right of this section. The value needs to be one more
than the maximum number of visible characters needed, to cater for a
string terminator. (If you ever try to exceed the defined maximum length of an
indirected text icon, one of the first things that usually happens is that the text of
your whole desktop display starts to revert to System font, although other effects
can occur.)

Appendix 7. !TemplEd

293

Border/fill/justification

Next, have a look at second section of the Edit icon window. This is
pretty self-explanatory and does not need many words here. It offers
several choices for how the icon and its text will look. The default options
are acceptable this time i.e. a border, filled colour, text centred both ways.

(Later on, we give a hint that it helps to keep a border around an icon until the
last possible moment in the window design process.)

Fonts

The next item to tackle is the font (and its colour) to be used for the text in
the icon. If we want to use the System Font (or Desktop Font, with later
machines) then the ‘Outline font’ option in the bottom section of the
Edit icon window needs to remain unticked. In this case, choosing the
colours of the text and its background is simply carried out via the right-
hand side of the third section of the window. You can either use the
‘nudgers’ or move the pointer over the colour box and press any mouse
button when the pointer changes to a menu symbol. This brings up the
complete palette and you click on the one you want. You do this twice:
once for foreground and once for background.

Note that the foreground colour is also used for the border of the icon
(assuming that the border option is ticked) and the background colour will
only be seen if the filled option is ticked.

Things get a little more complicated if we want to use an outline font.
Choosing the font itself is easy: just tick the ‘Outline font’ option and
choose your required font and size in the bottom section of the
Edit icon window. In our case, we will use “Homerton.Bold” at 12
point. (Note that, by default, the text width and height are the same - but
you can make them different values if you wish. The way to do this is self-
evident in the Edit icon window.)

However, if we want colour as well as the outline font, then the ‘validation
string’ needs to be used - see Appendix 5 to confirm the details used
below.

Appendix 7. !TemplEd

294

Validation string

This subject is important enough to warrant its own appendix, so see
Appendix 5 for details.

The validation string is simply entered into the writable icon at the top
right of the Edit icon window. You will see that this window already
contains the string:

Ktar;Pptr_write

which is the default validation string chosen by !TemplEd for a writable
icon. As it happens (see Chapter 7) we want to avoid any K-command in
our example, so our first action is to delete this command.

However, we do want the pointer to change to the ‘writable’ symbol when
it is over this icon, so we can leave the P-command as it is. (Try it out by
moving the pointer over our new Icon 0 in the NewCar window, to see that
it is working OK.)

To make the chosen outline font show text in red on a white background,
we need to add the F-command:

F0b

(The colours will default to Black on White - see Appendix 5.)

Further, also from Chapter 7, we want to restrict entries in this icon to the
upper case letters, the space character and the digits 0-9 (i.e. for car
registrations). Hence we need to add the A-command:

AA-Z 0-9

(The space character has been put in the middle to make it more obvious.)

So, our complete validation string for Icon 0 is now:

AA-Z 0-9;FOb;Pptr_write

Press ‘Update’ to effect this. You will see the colour change immediately
but the entry restrictions will only take effect in the actual program
window - have faith!

Appendix 7. !TemplEd

295

Initial text

At this stage, whether we have used an outline font or not, it is as well to
have a look at the writable box to the right of the text option (to the left of
and a little above the validation string writable icon). This allows us to
enter any text that we want to appear in our icon as default. Obviously, as
we are going to use indirected text in this particular case, we could also
arrange any initial text from within the program. As it happens we do not
want any default text this time so, when we are finished, this box will be
left blank - as it is by default.

However, there are a couple of very useful facilities which we can use
temporarily at this point. If we type into that writable icon the maximum
size of text we are going to allow (and with wide characters) we will be
able to check how this looks in the icon before we finalise things - and
further, when we press ‘Update’, the text ‘Max size’ value will be adjusted
correspondingly, if it is currently too low (a very helpful feature).

In the tutorial application we decided that a maximum of 10 characters
would be allowed for the car registration, so type:

8888888888

into the edit window top box and press ‘Update’. The digit 8 is fairly wide
and so now a string of ten of them will now appear in our new icon and we
can see straightaway that the icon is physically not large enough.

There are several ways to change the icon size. The quickest is to
<adjustdrag> any of the sides of the icon (press and hold <adjust>
until the pointer shape changes). You will soon get used to this: the
particular side is the one nearest the pointer when you press and hold - it
can be a little tricky with small icons.

Another way is to choose ‘Icon #0.Min. size’ from the ‘Window’ menu
and choose one of the options ‘Both/X/Y’. The icon size will be adjusted
to fit round whatever is currently the text in the icon - in either the x-
direction or y-direction or ‘Both’ according to the choice you made. (With
outline fonts, you may find that the result is still not quite right. In this
case, you simply have to adjust the size a little by the dragging method
above.)

Appendix 7. !TemplEd

296

(If you are using a modern computer but are releasing an application
for others to use, then you should check that all your icons are large
enough to display their text correctly if System Font is used. It only
takes a few seconds to do this using the Configuration window.)

The following screenshot shows the Edit icon window at this stage:

Appendix 7. !TemplEd

297

With Icon 0 now correctly sized, we can clear the “8888888888” from
the icon and press ‘Update’. The icon definition is now complete.

Copying icons

If you look at the picture of the finished NewCar window (page 84) you
will see that we need to end up with three similar writable icons (numbers
0, 1 and 2). We could achieve this by repeating the drag and drop from the
Icon palette and going through the same procedure, but there is a better
way to reduce workload.

Press <menu> over Icon 0 and ‘slide right’ over the ‘Icon #0’ and ‘Copy’
items. Then select one of the options ‘Up/Down/Left/Right’. This will
create a new icon (with the next available icon number) which will be an
exact copy of Icon 0 and will be placed above/below/ to the left/to the
right of Icon 0, corresponding to your choice.

Note that this new icon is selected after creation, so if you had used the
<adjust> button to keep the menus visible when making your copy
position selection, you could simply have pressed adjust twice to get the
required two copies of Icon 0. You would end up with a group of the three
icons touching and they will be numbered 0, l, and 2 if you have followed
the same sequence.

Icon position/alignment

We can now adjust the position of these icons. It can be done roughly by
dragging the icons. It can also be done accurately by selecting all three
icons (by the usual methods of <select> then <adjust>, or by dragging
a box around them) and then following the ‘SelectionAlign’ and/or
‘Selection.Space out’ menu chains to get the Align icons (or
Space out) window.

These are fairly self-explanatory and best explored by suck-it-and-see.

There are certain sensible rules which are followed, such as, with
alignment for example, the icon whose top left corner is nearest the top
and/or the left of the window is taken as the key icon. All other icons will
be moved to meet the selected alignment.

Other rules soon become clear with practice and are detailed in the
!TemplEd on-disc documentation.

Appendix 7. !TemplEd

298

Identical copies

Having got our three writable icons where we want them, we just need to
remember that although they are physically identical they do need to have
different A-commands in their respective validation strings - because Icon
1 is for dates and Icon 2 for a mileage number. You can peek at the
Templates file in the tutorial application to see what changes are needed.

Just as important is the point that if you have used the !TemplEd
iconnaming facility in the validation string (the N-command, see
Appendix 5) any icon copying will have faithfully reproduced the string
and the result will be more than one icon with the same name! Be warned!

The other text icons

To the left of each of the writable icons in the NewCar window is a text
label and, in fact, these are also icons. They were started by dragging the
‘Label’ icon from the icon palette then manipulated in the Edit icon
window to achieve the desired effect. In this case, no border and not filled
gives the effect that the text is written directly onto the window. Note that
the button type is ‘Never’ which means that it will not respond to clicks or
drags in the program window: it is, as it says, merely a label.

The text used in each label is not going to change and is entered into the
top box in the Edit icon window as default text. It needs to be
indirected because it is too long (>11 characters) to avoid that. The label
icon does, in fact, default to ‘indirected’ but, if it did not, it would
automatically switch to ‘indirected’ if default text of 12 or more characters
was typed in.

It is suggested that, as before, one of these label icons is created and then
copied twice. The text can then be altered in the copies.

The long icon to the bottom left of the NewCar window is also a label, but
it has been given a border and a fill colour to associate it visually with the
two icons to its right - the next two we need to deal with.

Appendix 7. !TemplEd

299

The ‘Clear all’ and ‘Create file’ icons are ‘Menu’ type buttons. That is,
they select/deselect themselves as the pointer moves over them.

There isn’t one of this button type in the !TemplEd icon palette, so you
need to create it by dragging one of the other types (of a similar look) and
then change the button type (as explained earlier) in the Edit icon
window. You can do it either by ‘nudging“ the current entry or (more
useful) by selecting from the menu which appears when you press
<select> over the icon labelled ‘Button type’.

Note that in this application these two menu type icons each need to be in
their own ESG for their menu select/deselect properties to work properly.
ESGs 1 and 2 have been used here.

Don’t forget that any icon created from the icon palette automatically
defaults to ESG 0.

The sprite icon

The final icon to look at is the decorative one which shows the petrol
pump sprite in the top left corner of the NewCar window. This is achieved
following the same procedure as for other icons, except that the ‘Sprite’
option is ticked and the sprite name (not sprite file path!) is entered into
the writable box to the right of the tick. (You would also need to tick
‘Indirected’ if you wanted to change the sprite during the program run.)

The only point to watch - and it is very easy to forget - is that the sprite
you want to display must have been ‘seen’ by the Wimp - typically by
ensuring it is in a sprite file which is included in an *IconSprites call
in your application’s !Boot and !Run files (and your application has been
‘seen’!). Don’t forget that you will almost certainly need at least a
!Sprites and a !Sprites22 version for the display to occur in all
screen modes.

When the sprite is (finally?!) displayed you can size the icon to fit it
properly and that is all there is to it.

Appendix 7. !TemplEd

300

Icon numbering

If you have used the sequence described the icons will probably be
numbered as follows:

0-2 - the three writable icons, from top to bottom

3-5 - their corresponding labels

6 - the long label icon at the bottom left

7 - the ‘Clear all’ menu button

8 - the ‘Create file’ menu button

9 - the sprite icon

Check this with the Icon info window, as described earlier.

In many programs, the programming is very much easier if groups of
icons have sequential numbering - for using FOR ... NEXT or
REPEAT ... UNTIL loops for instance, or for getting the caret cycling
logical. So an ability to renumber icons is very important in a template
editor and !TemplEd has very helpful facilities to do this.

Altering the number of a single icon is achieved by following the
‘Icon #n.Renumber’ menu trail and putting the required new number into
the writable box and pressing <return>.

To alter the numbers of several icons together (to number them in
sequence), the same steps are followed - this time ‘Selection.Renumber’,
of course - and then enter the new starting number required.

However, this bald description is not sufficient, because you need to be
aware of certain rules which come into play with renumbering.

Firstly, every time you create an icon it is given the lowest available icon
number. This does not always mean the next number in the sequence -
because you may have created an icon earlier and then deleted it. In this
case, a new icon is given the lowest available number of a deleted icon.

Appendix 7. !TemplEd

301

(!TemplEd never leaves any numbering gaps at the top of the numbering
sequence. So if you delete the icon with the highest number it will not be
registered as a deleted icon. Further, if there was a numbering gap
immediately below it, then this too will be eliminated at the same time.)

This means that it is possible (probable, perhaps) that you will complete
your icon designing and end up with gaps in the numbering. Unless you
realise what has happened, this can play havoc with the nerves when
renumbering!

To guard against this problem, follow the ‘Misc’ menu item from the
‘Window’ menu. This brings up a menu with four items on it and it is
‘Deleted icons’ (the last one) we are interested in, If this is ‘greyed out’
then you have no deleted icons registered. If it is not greyed out then you
have deleted some icons - and following the item across will give you
another menu with two options to undelete them and one option to ‘Purge’
them i.e. get rid of them for good. If you opt for this latter choice, the
remaining icons will be renumbered from 0, eliminating any gaps.

It is always prudent to make this check before ‘signing off on icon design
and before any renumbering.

Once you have eliminated the gaps (or, at least, are aware of them) you
can renumber with confidence.

Note that when you choose a group of icons to renumber in sequence, they
are renumbered in an order which is determined by their position in the
window. The order is akin to calculations on a spreadsheet: the ‘topmost
and leftmost’ setting the final numbering order. It is easy once you get the
hang of it and for windows with many icons you will probably find
yourself renumbering successive small groups of icons rather than the
whole lot at once.

!TemplEd is very helpful when renumbering groups of icons
successively, because it sets the default next starting number to be the one
after the renumbering sequence you have just completed - which is usually
what you want.

Appendix 7. !TemplEd

302

The final rule about renumbering is that you can’t get something for
nothing. If there are 10 icons numbered 0-9 and you renumber one of
them, you cannot renumber it to a higher number than 9. Further, if you
renumber, say. Icon 7 as Icon 2, then the previous Icon 2 will be
renumbered as Icon 7 i.e. numbers are swapped.

Selecting groups of icons to edit

To carry out the icon-editing actions on groups of icons e.g. renumbering,
it is necessary to select all the appropriate icons first. This can often be
done by the usual method of using <adjust> after the initial <select>.
However, this will not work if you have set up an ESG group - as soon as
you select another icon the already- selected one is de-selected!

The way round this is to <select drag> a box around the icons concerned.
On release, all the enclosed icons will be selected.

Leave the icon border on!

One final overall tip when designing icons: if you intend an icon to have
no border - and even more so if it is also going to be unfilled - put a border
around it until you have got everything else to your liking, then finally un-
tick the border option. Without a border, it is very easy to make an icon
invisible on the screen, which can be a nuisance and can even lead to it
being forgotten (and later mystifying you when the icon numbering goes
awry - see below).

Appendix 7. !TemplEd

303

Window editing
Now that all the icons have been created, we can return to the window
itself.

At this stage, we can now sensibly look at the window size and what
window controls we want around its edges e.g. scroll bars, close icon etc.
(These features are sometimes referred to as the window ‘furniture’.)

All these items are set from the Edit template window (see below) or via
the lower portion of the ‘Window’ menu - and they are mostly self-
explanatory.

Note the difference between the phrases “Window name” and “Window
title”. The former is the name of the window template which appears in
the template file window (usually at the top left of screen) and is referred

Appendix 7. !TemplEd

304

to in the SYS call (or the Dr Wimp wimp-function) when loading the
template into a program. The name is editable via the ‘TemplEd’ menu.

The latter is merely the text that appears in the title bar of a particular
window. This is editable via the ‘Edit title’ item of the ‘Window’ menu -
and note that it can be made indirected if you wish (essential if you are
going to use the usual asterisk to indicate unsaved data - in which case,
don’t forget to allow for the space-plus-asterisk in the maximum number
of text characters).

If you untick ‘Auto-redraw’ in the Edit template window, as you must
do if you intend to use the redraw method for graphics etc. (see
Chapters 11 and 12) then, on pressing ‘Update’ you will see that the
template window is cross-hatched, to alert you to this. It does not appear
in the program window, of course.

Note also that you can give a window (i.e. its background area) a button
type. This is essential if you want the window itself to respond to mouse
clicks, file drags, etc.

You may decide not to have a Close icon in a window. In which case,
when you want to close that window in the template editor, use the ‘Close
window’ item from the ‘Window’ menu. (In the program, of course, you
will then have to take steps to open/close such windows in response to
other user actions.)

Templates file window appearance

When you alter some of the window ‘furniture’ characteristics e.g. untick
one of the scroll bars, you will notice that the small icon representing that
window in the templates file window (normally at the top left of the
screen) will change correspondingly. This gives a quick visual indication
of the style of each window defined.

Appendix 7. !TemplEd

305

Default window/icon states

Finally, it is worth noting that when you load and display your window
template in your application, it will appear in exactly the state that it was
when you last saved it in the template editor. So, for instance, any icons
which were ticked or otherwise selected when you saved it in the editor
will appear as the default settings.

You may find this helpful, but it is probably better programming practice
to ensure that all icons etc. are unselected in the template editor before
saving them and then set deliberate default states in the program.

Final comment
As was said at the start of this Appendix, the above descriptions are not a
comprehensive guide to all the !TemplEd features: rather, it is a good
practical introduction to get you started with the most frequent actions.
The !TemplEd on-disc manual gives a much deeper insight - and Chapter
16 covers one particular other feature - the ‘Statistics’ option.

You will also probably find that other window template editors operate in
very similar ways for their basic actions.

Appendix 7. !TemplEd

306

Appendix 7. !TemplEd

307

Appendix 8. User-functions

Whenever you use Dr Wimp, whatever the version, your !RunImage will
always (need to) contain all the user-functions relevant to that version -
even if you are not using them i.e. you have left them ‘empty’.

The vital point to note about all user-functions is that you, the
programmer, never call them. They are called automatically when needed
by the DrWimp library - usually passing you important information in
their parameters. Your role is to fill the user-function DEFs with the code
necessary to meet your needs - using the passed information as needed and
mainly by calling the wimp-functions.

Because the concept of user-functions is what makes Dr Wimp so
powerful, it is worthwhile running fairly quickly through several of them
to ensure that their purpose and working is understood. (More detailed
information often occurs in other chapters under specific topic headings.)

But don’t forget that user-functions can change from one Dr Wimp
version to another and you should always refer to the Dr Wimp
Manual for the details of the version you are actually using.

The following comments apply to the user-functions as they existed in
Dr Wimp Version 3.80 (31st March 2003).

Appendix 8. User-functions

308

DEF PROCuser_initialise
ENDPROC

Called by FNwimp_initialise. Should be used in all applications.
Intended to help keep applications in a well-structured format. It should
contain anything that is necessary before wimp-polling starts. Generally,
that includes all window definitions/loading, initial menu definitions,
global variables. Dimensioning of arrays, parameter blocks, etc. should
usually be in here.

DEF PROCuser_error
ENDPROC

Only called in standard global error line of the skeleton !RunImage. It is
used to implement ‘good housekeeping’ actions which may be needed
when a ‘fatal’ error occurs e.g. closing files.

DEF FNuser_quit(type%)
=1

Called by various Wimp poll routines in the DrWimp library. It should be
used in all applications. It ensures an orderly exit from the application,
whether initiated by user choosing ‘Quit’ from the application or by a
desktop shutdown.

type% is 0 if the quit action was to exit the application, or 1 if a shutdown
was started.

Return is left as (the default) 1 if quitting/shutdown is to continue, or
changed to 0 if quitting/shutdown is to be halted e.g. to allow saving of
unsaved data.

Appendix 8. User-functions

309

DEF PROCuser_redraw(window%,minx%,miny%,
maxx%,maxy%,printing%,page%)

ENDPROC

Called by DrWimp when the Wimp calls for a redraw. It is used in all
applications that require the program (rather than the Wimp) to generate
text/graphics and for wysiwyg printing i.e. generally for any items that are
not contained in icons. The required plotting action is placed in this user-
function. (See the tutorial application.)

The window definition must have its ‘auto-redraw’ option deselected
for this function to work.

The parameters actually define the precise rectangle which the Wimp is
asking to be redrawn, thus paving the way for more efficient redraws. The
last two parameters indicate whether printing is under way and, if it is,
which page is currently being printed.

DEF PROCuser_mouseclick(window%,icon%,button%,
workx%,worky%)

ENDPROC

Called by DrWimp every time the <select> or <adjust> button is
clicked in a window of the application. The parameters give the window/
icon over which the click occurred, which button and the pointer
coordinates. Responses to mouse clicks are placed in this user-function. It
is used in probably every application - including the tutorial application.

DEF FNuser_menu(window%,icon%)
= 0

Called by DrWimp whenever the <menu> button is pressed over a
window/icon of the application, which latter are identified by the
parameters. The program simply needs to return the handle of the menu
then required to be opened. (Used in tutorial application.)

Appendix 8. User-functions

310

DEF FNuser_keypress(window%,icon%,key%)
=0

Called by DrWimp each time a keyboard key is pressed (if a window in
your application has the input focus). The parameters give the window/
icon having the caret and (according to use of the K-command in the
icon’s validation string - see Appendix 5) can also give the ASCII code of
the pressed key. (Used in tutorial application.)

All Wimp applications need to handle keypresses one way or another and
the DrWimp library does the necessary behind the scenes. If you want to
use the keypress to trigger some program action then that action is placed
in this user-function and the return value must then be changed to 1.
Unused keypresses should return 0.

DEF PROCuser_menuselection(menu%,item%,font$)
ENDPROC

Called by DrWimp each time an item is selected from a menu, with the
parameters giving the menu handle and item chosen - plus the font if the
selection was from a font menu. (See Chapter 17) Responses to the
selections are placed in this user-function.

It is used by nearly all applications including the tutorial application.

DEF FNuser_savefiletype(window%)
= ““

Used in conjunction with the two user-functions following below and
called by DrWimp in several circumstances which might involve a save
action. It identifies which filetype is to be used with a standard Save
window. When the parameter is a save window, the return is simply set to
the filetype required; see Chapter 18.

Appendix 8. User-functions

311

DEF PROCuser_saveicon(window%,RETURN drag%,RETURN
write%,RETURN ok%)

ENDPROC

In effect, this is a small utility routine to allow the programmer to specify
the icon numbers of the three icons in a standard Save window - the ‘drag’
icon, the writable icon and the ‘OK’ button. DrWimp will assume that
these are icons 0, 1 and 2 respectively unless this user-function says
differently; see Chapter 18.

DEF FNuser_savedata(path$,window%)
LOCAL ERROR
ON ERROR LOCAL =2
=1

Called by DrWimp when saving action needs to be taken e.g. when the
draggable icon from a Save window has been dragged to a directory. The
Save window handle is passed as a parameter, as well as the full path of
the destination to which it was dragged. (See Chapter 18.) The precise
saving action is put into this user-function and a 1 is returned.

The unusual default state of this user-function is necessary to allow
DrWimp to invoke the correct error messages when a drag to, say, a write-
protected floppy disc is made.

DEF FNuser_loaddata(path$,window%,icon%,ftype$,
workx%,worky%)

=0

This complements FNuser_savedata shown above. It is called by
DrWimp whenever a file is dragged onto a window of your application -
giving the window and icon handles dragged to, the path and filetype of
the dragged file and the position (in work area OS coordinates) where the
file was dropped. If a file is double- clicked instead of being dragged, the
final two parameters will both be -1. If you decide to load the file, the
loading action is put into this user-function and a 1 needs to be returned.

Appendix 8. User-functions

312

DEF PROCuser_null
ENDPROC

Called by DrWimp if the global variable NULL% is set to TRUE and Reason
Code 0 is received. It is one of the means by which timed operations and
‘multi-tasking’ are facilitated. (See Chapter 24.)

DEF PROCuser_print(minx%,miny%,maxx%,maxy%,page%)
ENDPROC

Called by DrWimp whenever a page needs to be printed, if ‘user printing’
method is active; see Chapter 21. It gives rectangle on page to be printed
(in paper coordinates) and page number.

DEF FNuser_printing(copy%,page%,
totpages%,pagepos%)

=0

Called repeatedly by DrWimp during printing, so as to keep the user
informed of current progress - passing current copy/page etc. It is typically
used to update visual progress indicator. If a 1 is returned the printing is
cancelled.

DEF PROCuser_printerchange
ENDPROC

Called by DrWimp whenever a printer driver is changed/modified, in order
to allow user to update page measurements, printer name etc. (Typical use
demonstrated in tutorial application.)

Remember!

There are many more user-functions and they are subject to
change with new releases of Dr Wimp.

All user-functions relevant to a specific Dr Wimp version
must always be present in the !RunImage file.

Appendix 8. User-functions

313

Appendix 9. Wimp-functions

The wimp-functions are subject to much more change than
user-functions and therefore any descriptive detail in this
section would soon become out of date.

Full details of all available wimp-functions are always listed in
Section 3 of the Dr Wimp Manual corresponding to the
Dr Wimp Version involved.

Appendix 9. Wimp-functions

314

Appendix 9. Wimp-functions

315

Appendix 10. Wimp Messaging
system

(Not to be confused with application ‘Messages’, as covered in Chapter 26!)

It is not necessary to give details of the Wimp Messaging system in this
introductory book, but it is useful to provide a brief non-technical
description.

The purpose of the Wimp Messaging system is to allow the Wimp to pass
useful management messages to/from a desktop application. Some are
‘broadcast’ to all applications and some are for individual applications.

For example, when an application wishes to print some output on a printer,
the application would normally wish to devolve the actual printing task to
a printer driver loaded by the !Printers application.

To do this, RISCOS has devised a Messaging system to allow, for
instance, an application to advise that it wants to send data to be printed;
for the !Printers application to acknowledge this and concur; and for
the data transfer to take place.

Naturally, the messages and the protocols are strictly defined and will only
work if all applications keep to the same rules.

The notifications to applications that these messages have arrived etc. are
carried out via the Wimp Poll process, specifically by Reason Codes 17,
18 and 19.

Perhaps the most important practical point to note is that it is essential for
each application to enable the Wimp Messaging system in its Wimp
initiahsation process. If this is not done the Messages will not be passed to
the application. (This may not prevent the application from running, but it will
not be able to use Reason Codes 17, 18 or 19.)

Appendix 10. Wimp Messaging system

316

Some of the topics which are carried via the Messaging system are:

Quit e.g. as a result of a Shutdown action.

Saving a Desktop boot file.

Opening/closing file directories

Screen Mode change

Desktop saving and loading

Printing via !Printers

Interactive Help

Colour picker

Sub-menu opening

Appendix 10. Wimp Messaging system

!Animate 225

!Bar 219

!Blocks 190

!Boot 191, 260, 299

!Boot application 261

!Boot file 63

!Clocker 225

!CodeTemps 141, 143, 285

!ColPick 231

!Crunch 161, 170

!Dynamic 190

!Fabricate 59, 160, 277

!FastSlow 225

!Fnc’n’Prc 45–46, 48, 54, 74

!Help 241, 263

!Linker 159, 161, 166

!MakeApp2 161, 169–170

!MultiPane 222

!MyApp 56

!PanePain 222

!Printers 128, 149

!PrintTest 156, 210

!Run 56, 191, 261, 299

!Saver 189-190

!ScaleDraw 201

!Slider 219

!SlowFast 225

!SprAreas 201

!Sprites 56, 67, 262, 299

!Sprites22 262, 299

!Sprites23 262

!StrongBS 161, 168

!TemplEd 52, 75, 92, 162, 216,

269, 276, 285

!Toolbar 222

*FX 249

*IconSprites 191, 262, 274, 299

32-bit ‘word’ 34

4-byte ‘word’ 28

4-colour modes 202

4-colour sprite 274

A
A-command 84, 233, 270, 294, 298

absolute code 169

accompanying disc 55

ADA 242

Adding icons 288

Adjust 265

<adjust> 265

<Alt-Break> 60

anti-aliased 272, 274

anti-aliasing 206

application icon 260

application name 25

application resources 15, 56, 75, 162,

259

application sprite 63, 260

arrowhead 79

ASCII 90, 270, 273, 310

asks the question 9

Attaching a window 78

Auto-redraw 304, 309

‘auto redraw’flag 194

‘auto redraw’ option 123

B
background colour 272

Index

Bar 215

blink rapidly 291

border 275

border type 275

bounding box 205, 212

BPUT 157, 187

buffer 32

button release 98-99

button type 28-29, 75, 84, 97-98,

215, 290, 304

C
caret cycling 300

caret movement 85

Caret placement 89

CarFuel 56

CDir 100

channel 29

‘Click/Drag’ 215-216

‘Click’ 98

clipping rectangle 195, 206, 212

close icon 303-304

CLOSE# 187

CMYK 227

colour 205

colour models 227

Colour Picker 227

coloured text 85

colours 85

Command Line 261

Control codes 205

coordinate conversions 118

coordinate systems 117

Coordinates 117

Copying icons 297

Creating windows/icons 141

cross-hatched 304

Custom error boxes 235

cycle the caret 85

D
D-command 272

DATA 32, 79

Declare all fonts 211

default paper size 128

Default window/icon states 305

Designing windows/icons 75

Desktop font 209, 293

desktop shutdown 308

destination variable 253

Dialogue type 227

DIM 192

Disc storage space 165-167, 169-171

displaying drawfiles 197

displaying JPEGs 199

displaying sprites 194

Displaying the window 86

‘Double-click/click/drag’ 266

‘Double-click’ 98-99

drag 98

draggable file icon 185

draggable icon 311

draggable save icon 187

dragged file 311

dragging a box 297

DRAW 117

drawfile 191, 211

DrWimp 312

DrWimp library 41, 49, 54-55

DrWimp library version 159

DrWimp Manual 51, 74

Dynamic Area 192, 242

Dynamic menus 103-104

dynamic run space 162-163, 165,

167, 169-171

E
enabled 85

Enabling icons 95

Enabling/disabling icons 87

END 164-165

EOF# 190

EOR 275

Error boxes 274

Error handling 25

Error reporting whilst printing 157

Error trap caution 60

Errors 234

ESG 142, 144, 291, 299, 302

example applications 48

Examples 63, 133, 150, 189, 225

exclusive ESG value 291

Exclusive Selection Group 291

F
F-command 272, 294

Filer 262

Filer menu 287

filetype 186, 310

fill 293

filled colour 293

filter 34

filter flag 25

Flags 28

FNuser_help 241

FNuser_keypress 89, 95, 233-234,

310

FNuser-loaddata 189-190, 311

FNuser_menu 43, 69, 72, 97, 180,

309

FNuser_menuhelp 241

FNuser_pane 221-222

FNuser_printing 212, 312

FNuser_quit 245, 308

FNuser_redraw 149

FNuser_savedata 186-187, 311

FNuser_savefiletype 186, 188, 310

FNuser_slider 217

FNuser_sliderback 217

FNwimp_changedynamic 244

FNwimp_countsprites 200

FNwimp_createdynamic 243

FNwimp_createfontmenu 182

FNwimp_createicon 142, 144-145,

266

FNwimp_createmenu 43, 69, 86,

104

FNwimp_createmenuarray 175-176

FNwimp_createmessagemenu 176

FNwimp_createwindow 142, 144-145

FNwimp_errorchoice 188, 235

FNwimp_fontchangeh 207

FNwimp_fontcolour 208

FNwimp_getdfilesize 201

FNwimp_getfont 136, 146, 154,

206, 208

FNwimp_geticontext 94

FNwimp_getjpegsize 201

FNwimp_getjpegsizefile 201

FNwimp_getmenutitle 113

FNwimp_getnumberofmessages 240

FNwimp_getpapersize 127, 130

FNwimp_getpdrivername 127

FNwimp_getscreensize 130-131

FNwimp_getscroll 126

FNwimp_getsliderpcent 218

FNwimp_getspritename 200

FNwimp_getspritesize 200

FNwimp_gettextsize 209

FNwimp_gettextsizeh 209

FNwimp_getwindowvisiblescreen

126

FNwimp_getwindowvisiblesize 126

FNwimp_getwindowvisiblework 126

FNwimp_getwindowworksize 126

FNwimp_iconbar 43, 67

FNwimp_initialise 57, 60-61, 163

FNwimp_initmessages 177, 238

FNwimp_lengthtoOS 131, 213

FNwimp_libversion 160

FNwimpJoaddfile 192

FNwimp_loadjpegfile 192

FNwimp_loadsprites 192

FNwimp_loadwindow 42, 77, 86

FNwimp_measuredynamic 244

FNwimp_measurefile 192

FNwimp_menusize 106

FNwimp_messlook0 238

FNwimp_messlookl 238

FNwimp_messlook2 238

FNwimp_OStolength 131

FNwimp_pdriverpresent 127, 130

FNwimp_putsliderpcent 219

FNwimp_recreatefontmenu 182

FNwimp_reinitmessages 240

FNwimp_screentopaper 153

FNwimp_underline 207

FNwimp_worktopaper 153

FNwimp_worktoscreen 134

Font changing 207

font handle 136, 205, 206

Font handling 78

Font menus 182

font string 205

font/size pairing 206

Fonts 262, 293

foreground colour 272

fragmentation 242

‘Free’ 242

Fuel 58

FuncProc 48, 54

F-command 84

G
GET$# 190

global variable 24, 308

graphics 117

greyed out 85, 87

H
handle 29, 60

Handling text 205

hex numbers 250

high-definition sprites 262

highlight 85, 275

highlight colour 275

HSV 227

I
Icon editing window 290

Icon flags 29, 142

“Icon info” 287

Icon info window 289

icon number 30, 76, 79, 99, 216

Icon numbering 300

Icon palette 288, 297-298

Icon position/alignment 297

icon renumbering 30

Icon validation 269

icon validation string 75, 205

iconbar 30

iconbar icon 30

Iconbar menu 69

Iconbar sprite 67

Icons 29

IconSprites 57, 63, 260

Identical copies 298

IF THEN ELSE ENDIF 95

image files 191

indirected 38, 76, 80, 84, 94,

252, 269, 298

indirected text icon 77

Indirection 291

Info box 16

Info window 32, 76

Initial text 295

input focus 94, 267, 270, 310

input parameter values 251

Interactive help 241

internal multi-tasking 223

J
JPEG 191

justification 209, 293

K
K-command 94, 233, 273

Key presses 89

keyboard 5, 233

keyboard entries 92

K-command 85, 294

L
L-command 274

landscape 150

Largest definition 163

left-justified 209

LIBRARY 63, 164

line numbers 63

‘live’ parameter values 69-70, 74

Loading a window 77

loading action 311

loading data 189

loads onto the iconbar 15

LOCAL 65

LOCAL ERROR 187

log off 8

log on 8

Logging on 25, 60

M
Making the colour choice 230

mask 11, 34, 62, 223

maximum length 77

memory block 24

memory needs 161

<menu> 97, 265

‘Menu’ 85, 144, 291, 299

Menu 265

menu creation 175

Menu flags 31

menu handle 241

menu item number 241

Menu position 180

Menu re-creation 178

menu selection 36, 73

Menus 31

Messages 263

Messages file 176, 237, 238

messages textfile 242

messaging protocol 149

Messaging system 149

Modules 262

mouse button 5

Mouse clicks 97

mouse pointer position 99

MOVE 117

Moving the caret 94

multi-page documents 151

multi-tasking 224, 312

MyApp 58

MyApp$Dir 57

N
N-command 276, 298

Next 261

‘Never’ 76, 84, 298

non-Wimp program 5

non-zero ESG 291

Null Code 34

NULL% 223

numbers 94

Numbers or strings? 115

O
ObeySDir 57

OK button 185, 187

ON ERROR LOCAL 187

OPENIN 101, 190

OPENOUT 101, 187

orientation 150

OS units 100, 133

OS version 25

OSCLI 100

OS_SWINumberFromString 251

OS_SWINumberToString 251

outline fonts 38, 78, 84, 196, 205

Output variables 253

P
P-command 84, 274, 294

page 61, 164-165

page number 312

‘pages’of memory 254

paper coordinates 151, 154, 211

Paper size 127, 211

parameter block 12, 254

PD 47

period separated 183, 205

PLOT 117

plot the drawfile 117

plot the sprite 117

Plotting the graph 137

point size 206

pointer sprite 202

portrait 150

Post-programming utilities 161

Postscript 150, 211

Postscript printers 155

PRINT 164

print margins 127, 130, 134

printer driver 127, 130, 144, 211

printer drivers 149

printing 149

Printing drawfiles 198

printing is cancelled 312

printing JPEGs 199

Printing sprites 194, 195

PROCuser_closewindow 100, 114,

221. 235

PROCuser_colourpickerrgb 231

PROCuser_declarefonts 155, 198,

210

PROCuser_enteringwindow 202

PROCuser_error 57, 308

PROCuser_initialise 42, 44, 61,

68, 69, 77, 91, 190, 206, 308

PROCuser_keypress 114

PROCuser_leavingwindow 202

PROCuser_menu 98, 266

PROCuser_menuselection 43, 73,

105- 106, 110, 124, 129, 310

PROCuser_mouseclick 43, 98-99,

114, 152, 266, 309

PROCuser_null 223, 312

PROCuser_openwindow 100, 114,
221, 235

PROCuser_overmenuarrow 103,

181, 230

PROCuser_print 149, 151, 195,

212- 213, 312

PROCuser_printerchange 128,

137, 312

PROCuser_redraw 121, 125, 133,

151-152, 194-195, 309

PROCuser_saveicon 186-187, 311

PROCuser_slidervalue 218

PROCwimp_attachsubmenu 43, 78,

186

PROCwimp_bar 216

PROCwimp_bindpointer 235

PROCwimp_closedown 57

PROCwimp_declaredfilefonts 156,

198

PROCwimp_declarefont 155

PROCwimp_declarefonth 156

PROCwimp_deletedynamic 244

PROCwimp_deskplottext 209

PROCwimp_deskplotwindowtext209

PROCwimp_error 57, 93, 160, 234

PROCwimp_iconenable 87

PROCwimp_initdfiles 196

PROCwimpJosefont 207

PROCwimp_menuclose 187

PROCwimp_menupopup 180

PROCwimp_menuselection 44

PROCwimp_menutick 103

PROCwimp_opencolour-

pickerrgb 228

PROCwimp_opensubmenucolour-

pickerrgb 229

PROCwimp_openwindow 44, 86,

106, 125

PROCwimp_openwindowat 126,

132, 221

PROCwimp_plottext 136, 205

PROCwimp_plottexth 136, 207

PROCwimp_plotwindowrectangle125

PROCwimp_plotwindowtext 206

PROCwimp_plotwindowtexth

207-208

PROCwimp_pointer 202

PROCwimp_poll 57, 62, 77, 223

PROCwimp_pollidle 225

PROCwimp_print 151-152, 155,

157, 211

PROCwimp_putcaret 89, 94, 99

PROCwimp_puticonfont 183

PROCwimp_puticontext 44, 79, 94,

186, 189

PROCwimp_putmenuitem 103-106

PROCwimp_putmenutitle 103

PROCwimp_quit 44, 73, 245-246

PROCwimp_recreatemenu 103, 178

PROCwimp_recreatemenuarray 103,

178

PROCwimp_recreatemessagemenu

103, 178

PROCwimp_redrawwindow 132

PROCwimp_releasepointer 235

PROCwimp_removemenuitem 103

PROCwimp_render 197, 212

PROCwimp_rendeijpeg 199, 212

PROCwimp_rendeijpegfile 199

PROCwimp_renderpoolsprite 196

PROCwimp_rendersprite 194-195,

212

PROCwimp_renderwindow 197

PROCwimp_renderwindowjpeg 199

PROCwimp_renderwindowjpegfile
199

PROCwimp_renderwindowspoolspri-
te 196

PROCwimp_renderwindowsprite

194-195

PROCwimp_resizewindow 126, 129

PROCwimp_resizewindowvisible

126, 132

PROCwimp_scroll 126

PROCwimp_scrollto 126

PROCwimp_setforegroundcolour 134

PROCwimp_singlepoll 224

PROCwimp_singlepollidle 225

Program size 161, 165

programming tools 13

progress of printing 150

protecting your coding 161

ptr_default 202

Public Domain 47

Q
‘the question’ 6

Quitting 245

R
R-command 275

‘Radio’ 291

RAM space 162

Re-initiating Messages files 240

‘Release’ 98-99

Re-sizing windows 126

READ 32, 79

Reading text 94

Reason Code 0 11, 34, 35, 62, 223,

312

Reason Code 1 120, 123

Reason Code 2 12, 120

Reason Code 3 12

Reason Code 6 10, 35, 265

Reason Code 8 270

Reason Code 9 10, 36

Reason Codes 10, 34, 62, 257

Reason Codes 17 & 18 149

Reason Codes 17, 18 and 19 128, 315

RECTANGLE FILL 213

rectangles 120

red/green/blue amounts 206

redraw printing 149, 151

Redraw process 120

Redraw request 120

Redraw windows 123

registers 251

Relocatable Module Area 242

REM 167

REM statements 160

<return> 89

revert to System font 292

‘rgb’ value 135

RGB 227

RISCOS Style Guide 259

RISCOS version 60-61

RMA 242

rounding errors 115

Run 57, 261

Running space 162

S
S-command 275

save action 310

Save box 100

Saving data 185

screen coordinates 117, 133, 135,

151, 154, 195, 205

screen pointer 5

screen units 118, 133

scroll bars 303

scroll values 126

‘seeing’ the application 260

‘seen’ 63

<select> 265

<select>/<adjust> 97

Select 265

select/deselect 299

Selecting groups of icons 302

Selections from a font menu 183

selects the icon 85

Set 57, 260

Shell packages 13

Shutdown 245

skeleton Wimp application 13, 52

Slider 216

slider back icon 216

slider pair 218

Sliders and bars 215

Software Interrupt 249

sprite 191

sprite area 78

sprite file 260

sprite icon 299

Sprites in the ‘Wimp pool’ 196

standard error box 234

standard Save window 185, 311

Star Command 191

start of the program 165

static run space 162, 165, 167,

169- 171

Statistics 162, 305

Storage size 162

STR$ 94, 219

string array 175

string terminator 77

Style Guide 233, 262

sub-menu 78, 109

SWI 249

SYS &35 250

SYS call 24, 249

SYS “OS_ReadModeVariable” 249,

253, 255

SYS “Wimp_CloseDow’n” 18-19

SYS “Wimp_CloseWindow” 12, 19,

24, 39

SYS “Wimp_CreateIcon” 21, 27

SYS “Wimp_CreateMenu” 23, 27

SYS “Wimp_CreateSubMenu” 27

SYS “Wimp_CreateWindow” 21,

27-28

SYS “Wimp_GetIconState” 39-40

SYS “Wimp_GetPointerInfo” 23, 39

SYS “Wimp_GetRectangle” 120

SYS “Wimp_GetWindowState” 22,

24, 39

SYS “Wimp_Initialise” 17

SYS “Wimp_OpenWindow” 12, 19,

22, 24, 39

SYS “Wimp_Poll” 9, 19, 62

SYS ‘’Wimp_RedrawWindow‘’ 120

SYS “Wimp_ReportError 19, 26

system font 80, 136, 210, 293

system variable 57, 260

SYS “Wimp_GetWindowState” 35

SYS “Wimp_Poll” 34

T
Task Display 60, 243, 245, 261

Task Manager 245

Task Window 5

template editor 53, 75, 77, 123,

141, 143, 269, 285

template file 75, 286

Templates 162, 262, 287

terminator character 32

Text areas in drawfiles 198

text centred 293

text height 212

text in icons 79

text in icons and menus 32

text length and height 209

Text plotting 136

Text positioning 209

text substitution 238

text-plus-sprite icon 275

textfile 150

timed operations 312

token 176, 237

TOP 164-165

top margin 212

TRACE 157

TRACE CLOSE 157

TRACE OFF 157

TRACE ON 157

TRACE TO 157

tutorial application 55

U

unsaved data 287

<up/down> 89

upgrade 52

Use of libraries 33

user printing 149, 211

user sprite area 202, 262

user-functions 41, 53, 69, 307

User-input validation 92

utility 141

utility applications 48, 161

Utils 59

V
VAL 94

validation string 84, 91-92, 142, 202,

233, 269, 292-294, 298

Variable name 65

VDU4 164

VDU5 136, 164

VDU7 157

version number 68, 80

visible window area 131

W
warning messages 235

warnings 25

WHILE ... END WHILE 9

Wimp 6

Wimp initialisation 60

Wimp messages 25

Wimp Messaging system 44, 61,

128, 176, 237, 263, 315

Wimp poll 9, 34

Wimp sprite pool 67, 78, 202, 274

wimp-functions 41, 53

WimpSlot 57, 60, 162, 165, 167,

169-171, 261

window definition template 75

Window editing 303

Window flags 28

Window Manager 6, 25

window position 126

window size 303

window stack position 100

window template 38

Window Template editor 52

window template file 38, 285

Window template statistics 162

window title 246

window ‘furniture’ 303

Window/Icon button types 265

Windows 27

window’s background 72

work area 118

work area coordinates 133, 151, 195,

206

Work Area flags 28

work coordinates 135

work units 118

‘Writable’ 84, 290

writable icon 185, 233

write-protected floppy disc 311

wysiwyg 149-150, 31,

